Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: CognitiveLab/Samvaad_Hindi_Hinglish_Llama3_Prompt_formate
    type: completion 
    field: text
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./llama3-gaja-v0.1

sequence_len: 8000
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: llama3-gaja-v0.1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 6
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

llama3-gaja-v0.1

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.8709 0.0 1 1.8383
1.1106 0.25 128 1.0989
1.0379 0.5 256 1.0510
1.0402 0.75 384 1.0386
1.0703 1.0 512 1.0365

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for AdithyaSK/LLama3-Gaja-Hindi-8B-Instruct-alpha

Adapter
(622)
this model