AdonaiHS's picture
End of training
22007d9
|
raw
history blame
3.51 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.84

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9097
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3000

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.0825 0.88 100 0.47 1.8392
1.4043 1.77 200 0.67 1.2675
1.0686 2.65 300 0.71 1.0186
0.8037 3.54 400 0.74 0.9198
0.6215 4.42 500 0.78 0.7636
0.5106 5.31 600 0.76 0.7937
0.3844 6.19 700 0.78 0.6909
0.3043 7.08 800 0.77 0.7279
0.2453 7.96 900 0.82 0.6447
0.211 8.85 1000 0.84 0.6404
0.2268 9.73 1100 0.77 0.7198
0.1565 10.62 1200 0.83 0.6704
0.0694 11.5 1300 0.83 0.8017
0.0568 12.39 1400 0.8 0.7841
0.0441 13.27 1500 0.81 0.7757
0.0302 14.16 1600 0.84 0.7819
0.0116 15.04 1700 0.83 0.7949
0.0289 15.93 1800 0.85 0.8057
0.0115 16.81 1900 0.83 0.8271
0.0081 17.7 2000 0.86 0.8005
0.0124 18.58 2100 0.8927 0.8
0.0219 19.47 2200 0.8126 0.85
0.0161 20.35 2300 0.8464 0.85
0.0157 21.24 2400 0.8459 0.86
0.0039 22.12 2500 1.0282 0.8
0.0157 23.01 2600 0.8649 0.86
0.0119 23.89 2700 0.8894 0.85
0.0129 24.78 2800 0.8624 0.87
0.0124 25.66 2900 0.8862 0.85
0.0025 26.55 3000 0.9097 0.84

Framework versions

  • Transformers 4.32.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.14.4
  • Tokenizers 0.13.3