metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9971
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2793 | 0.88 | 100 | 2.1792 | 0.41 |
1.992 | 1.77 | 200 | 1.6741 | 0.56 |
1.4928 | 2.65 | 300 | 1.2795 | 0.56 |
1.1156 | 3.54 | 400 | 0.9983 | 0.69 |
0.9162 | 4.42 | 500 | 0.8222 | 0.73 |
0.6785 | 5.31 | 600 | 0.8422 | 0.78 |
0.4695 | 6.19 | 700 | 0.7034 | 0.8 |
0.3362 | 7.08 | 800 | 0.9594 | 0.72 |
0.2051 | 7.96 | 900 | 0.6157 | 0.84 |
0.1242 | 8.85 | 1000 | 0.6059 | 0.86 |
0.0678 | 9.73 | 1100 | 0.7626 | 0.86 |
0.0479 | 10.62 | 1200 | 0.7886 | 0.84 |
0.0216 | 11.5 | 1300 | 0.8302 | 0.85 |
0.0202 | 12.39 | 1400 | 0.8921 | 0.86 |
0.0155 | 13.27 | 1500 | 0.9971 | 0.85 |
Framework versions
- Transformers 4.32.0
- Pytorch 1.12.1+cu113
- Datasets 2.14.4
- Tokenizers 0.13.3