wav2vec2-xls-r-164m-id

This model is a fine-tuned version of evanarlian/distil-wav2vec2-xls-r-164m-id on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2865
  • Wer: 0.2923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 80.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4047 4.59 5000 1.0167 0.9138
0.587 9.18 10000 0.4639 0.5615
0.3782 13.77 15000 0.3375 0.4496
0.2867 18.37 20000 0.2881 0.4022
0.2519 22.96 25000 0.2775 0.3700
0.1941 27.55 30000 0.2701 0.3516
0.1727 32.14 35000 0.2795 0.3486
0.1448 36.73 40000 0.2878 0.3364
0.1251 41.32 45000 0.2649 0.3275
0.113 45.91 50000 0.2862 0.3168
0.0994 50.51 55000 0.2798 0.3091
0.0938 55.1 60000 0.2864 0.3070
0.0853 59.69 65000 0.2860 0.3069
0.0724 64.28 70000 0.2994 0.3003
0.0723 68.87 75000 0.2951 0.2983
0.0666 73.46 80000 0.2886 0.2941
0.0659 78.05 85000 0.2865 0.2923

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train AhBotNLP/wav2vec2-xls-r-164m-id

Evaluation results