evanarlian
commited on
Commit
•
facdc9c
1
Parent(s):
2258d47
update model card README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ model-index:
|
|
17 |
metrics:
|
18 |
- name: Wer
|
19 |
type: wer
|
20 |
-
value: 0.
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -25,10 +25,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
25 |
|
26 |
# wav2vec2-xls-r-164m-id
|
27 |
|
28 |
-
This model is a fine-tuned version of [evanarlian/wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
|
29 |
It achieves the following results on the evaluation set:
|
30 |
-
- Loss: 0.
|
31 |
-
- Wer: 0.
|
32 |
|
33 |
## Model description
|
34 |
|
@@ -47,47 +47,37 @@ More information needed
|
|
47 |
### Training hyperparameters
|
48 |
|
49 |
The following hyperparameters were used during training:
|
50 |
-
- learning_rate:
|
51 |
- train_batch_size: 24
|
52 |
- eval_batch_size: 24
|
53 |
- seed: 42
|
54 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
-
- lr_scheduler_warmup_ratio: 0.
|
57 |
-
- num_epochs:
|
58 |
- mixed_precision_training: Native AMP
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
63 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
64 |
-
|
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.0672 | 33.06 | 36000 | 0.3668 | 0.3086 |
|
82 |
-
| 0.0713 | 34.89 | 38000 | 0.3560 | 0.3048 |
|
83 |
-
| 0.0637 | 36.73 | 40000 | 0.3522 | 0.3028 |
|
84 |
-
| 0.0695 | 38.57 | 42000 | 0.3407 | 0.3014 |
|
85 |
-
| 0.0657 | 40.4 | 44000 | 0.3456 | 0.3025 |
|
86 |
-
| 0.0598 | 42.24 | 46000 | 0.3498 | 0.3013 |
|
87 |
-
| 0.059 | 44.08 | 48000 | 0.3563 | 0.3012 |
|
88 |
-
| 0.0645 | 45.91 | 50000 | 0.3514 | 0.3002 |
|
89 |
-
| 0.0595 | 47.75 | 52000 | 0.3545 | 0.3000 |
|
90 |
-
| 0.064 | 49.59 | 54000 | 0.3510 | 0.2990 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
17 |
metrics:
|
18 |
- name: Wer
|
19 |
type: wer
|
20 |
+
value: 0.2923162069919749
|
21 |
---
|
22 |
|
23 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
25 |
|
26 |
# wav2vec2-xls-r-164m-id
|
27 |
|
28 |
+
This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
|
29 |
It achieves the following results on the evaluation set:
|
30 |
+
- Loss: 0.2865
|
31 |
+
- Wer: 0.2923
|
32 |
|
33 |
## Model description
|
34 |
|
|
|
47 |
### Training hyperparameters
|
48 |
|
49 |
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 0.0001
|
51 |
- train_batch_size: 24
|
52 |
- eval_batch_size: 24
|
53 |
- seed: 42
|
54 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_ratio: 0.3
|
57 |
+
- num_epochs: 80.0
|
58 |
- mixed_precision_training: Native AMP
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
63 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
64 |
+
| 1.4047 | 4.59 | 5000 | 1.0167 | 0.9138 |
|
65 |
+
| 0.587 | 9.18 | 10000 | 0.4639 | 0.5615 |
|
66 |
+
| 0.3782 | 13.77 | 15000 | 0.3375 | 0.4496 |
|
67 |
+
| 0.2867 | 18.37 | 20000 | 0.2881 | 0.4022 |
|
68 |
+
| 0.2519 | 22.96 | 25000 | 0.2775 | 0.3700 |
|
69 |
+
| 0.1941 | 27.55 | 30000 | 0.2701 | 0.3516 |
|
70 |
+
| 0.1727 | 32.14 | 35000 | 0.2795 | 0.3486 |
|
71 |
+
| 0.1448 | 36.73 | 40000 | 0.2878 | 0.3364 |
|
72 |
+
| 0.1251 | 41.32 | 45000 | 0.2649 | 0.3275 |
|
73 |
+
| 0.113 | 45.91 | 50000 | 0.2862 | 0.3168 |
|
74 |
+
| 0.0994 | 50.51 | 55000 | 0.2798 | 0.3091 |
|
75 |
+
| 0.0938 | 55.1 | 60000 | 0.2864 | 0.3070 |
|
76 |
+
| 0.0853 | 59.69 | 65000 | 0.2860 | 0.3069 |
|
77 |
+
| 0.0724 | 64.28 | 70000 | 0.2994 | 0.3003 |
|
78 |
+
| 0.0723 | 68.87 | 75000 | 0.2951 | 0.2983 |
|
79 |
+
| 0.0666 | 73.46 | 80000 | 0.2886 | 0.2941 |
|
80 |
+
| 0.0659 | 78.05 | 85000 | 0.2865 | 0.2923 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|