evanarlian commited on
Commit
fdafed2
·
1 Parent(s): cf558e9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - evanarlian/common_voice_11_0_id_filtered
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: wav2vec2-xls-r-164m-id
10
+ results:
11
+ - task:
12
+ name: Automatic Speech Recognition
13
+ type: automatic-speech-recognition
14
+ dataset:
15
+ name: evanarlian/common_voice_11_0_id_filtered
16
+ type: evanarlian/common_voice_11_0_id_filtered
17
+ metrics:
18
+ - name: Wer
19
+ type: wer
20
+ value: 0.3199428097039019
21
+ ---
22
+
23
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
24
+ should probably proofread and complete it, then remove this comment. -->
25
+
26
+ # wav2vec2-xls-r-164m-id
27
+
28
+ This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset.
29
+ It achieves the following results on the evaluation set:
30
+ - Loss: 0.3215
31
+ - Wer: 0.3199
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 0.0002
51
+ - train_batch_size: 24
52
+ - eval_batch_size: 24
53
+ - seed: 42
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_ratio: 0.3
57
+ - num_epochs: 40.0
58
+ - mixed_precision_training: Native AMP
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
63
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
64
+ | 3.5445 | 0.92 | 1000 | 3.0106 | 1.0000 |
65
+ | 2.5067 | 1.84 | 2000 | 1.6134 | 0.9905 |
66
+ | 1.0279 | 2.75 | 3000 | 0.7667 | 0.8217 |
67
+ | 0.7823 | 3.67 | 4000 | 0.6141 | 0.7224 |
68
+ | 0.6504 | 4.59 | 5000 | 0.5228 | 0.6503 |
69
+ | 0.5687 | 5.51 | 6000 | 0.4666 | 0.5963 |
70
+ | 0.5026 | 6.43 | 7000 | 0.4288 | 0.5612 |
71
+ | 0.4584 | 7.35 | 8000 | 0.4048 | 0.5267 |
72
+ | 0.4193 | 8.26 | 9000 | 0.4057 | 0.5218 |
73
+ | 0.3931 | 9.18 | 10000 | 0.3820 | 0.4813 |
74
+ | 0.3651 | 10.1 | 11000 | 0.3686 | 0.4709 |
75
+ | 0.3526 | 11.02 | 12000 | 0.3665 | 0.4655 |
76
+ | 0.3333 | 11.94 | 13000 | 0.3440 | 0.4485 |
77
+ | 0.3095 | 12.86 | 14000 | 0.3314 | 0.4331 |
78
+ | 0.2802 | 13.77 | 15000 | 0.3360 | 0.4157 |
79
+ | 0.2724 | 14.69 | 16000 | 0.3331 | 0.4107 |
80
+ | 0.2488 | 15.61 | 17000 | 0.3255 | 0.4037 |
81
+ | 0.231 | 16.53 | 18000 | 0.3089 | 0.3950 |
82
+ | 0.2146 | 17.45 | 19000 | 0.3398 | 0.3990 |
83
+ | 0.2103 | 18.37 | 20000 | 0.3080 | 0.3805 |
84
+ | 0.2035 | 19.28 | 21000 | 0.3158 | 0.3828 |
85
+ | 0.1933 | 20.2 | 22000 | 0.3118 | 0.3728 |
86
+ | 0.1839 | 21.12 | 23000 | 0.3076 | 0.3690 |
87
+ | 0.1791 | 22.04 | 24000 | 0.3041 | 0.3658 |
88
+ | 0.1696 | 22.96 | 25000 | 0.3092 | 0.3603 |
89
+ | 0.1608 | 23.88 | 26000 | 0.2936 | 0.3555 |
90
+ | 0.1568 | 24.79 | 27000 | 0.2936 | 0.3560 |
91
+ | 0.1456 | 25.71 | 28000 | 0.3257 | 0.3543 |
92
+ | 0.1399 | 26.63 | 29000 | 0.3100 | 0.3424 |
93
+ | 0.1345 | 27.55 | 30000 | 0.3172 | 0.3472 |
94
+ | 0.1264 | 28.47 | 31000 | 0.3276 | 0.3412 |
95
+ | 0.1289 | 29.38 | 32000 | 0.3104 | 0.3401 |
96
+ | 0.1246 | 30.3 | 33000 | 0.3204 | 0.3352 |
97
+ | 0.1156 | 31.22 | 34000 | 0.3013 | 0.3353 |
98
+ | 0.1143 | 32.14 | 35000 | 0.3102 | 0.3322 |
99
+ | 0.1152 | 33.06 | 36000 | 0.3240 | 0.3323 |
100
+ | 0.1093 | 33.98 | 37000 | 0.3105 | 0.3295 |
101
+ | 0.101 | 34.89 | 38000 | 0.3112 | 0.3263 |
102
+ | 0.1017 | 35.81 | 39000 | 0.3263 | 0.3239 |
103
+ | 0.0915 | 36.73 | 40000 | 0.3176 | 0.3226 |
104
+ | 0.0943 | 37.65 | 41000 | 0.3141 | 0.3210 |
105
+ | 0.0898 | 38.57 | 42000 | 0.3177 | 0.3183 |
106
+ | 0.0923 | 39.49 | 43000 | 0.3215 | 0.3199 |
107
+
108
+
109
+ ### Framework versions
110
+
111
+ - Transformers 4.27.0.dev0
112
+ - Pytorch 1.13.1+cu117
113
+ - Datasets 2.9.1.dev0
114
+ - Tokenizers 0.13.2