AhamadShaik/SegFormer_RESIZE_x.5
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0497
- Train Dice Coef: 0.8670
- Train Iou: 0.7679
- Validation Loss: 0.0477
- Validation Dice Coef: 0.8831
- Validation Iou: 0.7923
- Train Lr: 1e-10
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-10, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Dice Coef | Train Iou | Validation Loss | Validation Dice Coef | Validation Iou | Train Lr | Epoch |
---|---|---|---|---|---|---|---|
0.2269 | 0.5814 | 0.4248 | 0.1165 | 0.7019 | 0.5504 | 1e-04 | 0 |
0.1305 | 0.6934 | 0.5423 | 0.0877 | 0.7790 | 0.6433 | 1e-04 | 1 |
0.1116 | 0.7311 | 0.5867 | 0.0729 | 0.8299 | 0.7120 | 1e-04 | 2 |
0.0985 | 0.7624 | 0.6241 | 0.0648 | 0.8555 | 0.7491 | 1e-04 | 3 |
0.0918 | 0.7766 | 0.6431 | 0.0711 | 0.8271 | 0.7098 | 1e-04 | 4 |
0.0869 | 0.7877 | 0.6566 | 0.0607 | 0.8552 | 0.7492 | 1e-04 | 5 |
0.0818 | 0.7993 | 0.6722 | 0.0555 | 0.8665 | 0.7662 | 1e-04 | 6 |
0.0753 | 0.8136 | 0.6906 | 0.0544 | 0.8701 | 0.7719 | 1e-04 | 7 |
0.0719 | 0.8216 | 0.7016 | 0.0530 | 0.8725 | 0.7754 | 1e-04 | 8 |
0.0715 | 0.8221 | 0.7027 | 0.0588 | 0.8610 | 0.7579 | 1e-04 | 9 |
0.0673 | 0.8304 | 0.7139 | 0.0502 | 0.8766 | 0.7820 | 1e-04 | 10 |
0.0634 | 0.8388 | 0.7260 | 0.0520 | 0.8757 | 0.7806 | 1e-04 | 11 |
0.0617 | 0.8435 | 0.7328 | 0.0513 | 0.8776 | 0.7831 | 1e-04 | 12 |
0.0731 | 0.8230 | 0.7046 | 0.0540 | 0.8722 | 0.7752 | 1e-04 | 13 |
0.0612 | 0.8439 | 0.7335 | 0.0523 | 0.8749 | 0.7793 | 1e-04 | 14 |
0.0568 | 0.8534 | 0.7473 | 0.0537 | 0.8779 | 0.7842 | 1e-04 | 15 |
0.0549 | 0.8569 | 0.7529 | 0.0486 | 0.8817 | 0.7903 | 5e-06 | 16 |
0.0526 | 0.8607 | 0.7584 | 0.0470 | 0.8849 | 0.7953 | 5e-06 | 17 |
0.0516 | 0.8641 | 0.7633 | 0.0478 | 0.8844 | 0.7946 | 5e-06 | 18 |
0.0523 | 0.8625 | 0.7610 | 0.0483 | 0.8817 | 0.7901 | 5e-06 | 19 |
0.0507 | 0.8662 | 0.7661 | 0.0475 | 0.8842 | 0.7941 | 5e-06 | 20 |
0.0504 | 0.8664 | 0.7665 | 0.0477 | 0.8832 | 0.7924 | 5e-06 | 21 |
0.0504 | 0.8674 | 0.7682 | 0.0474 | 0.8833 | 0.7926 | 5e-06 | 22 |
0.0501 | 0.8655 | 0.7657 | 0.0475 | 0.8833 | 0.7926 | 2.5e-07 | 23 |
0.0498 | 0.8677 | 0.7687 | 0.0471 | 0.8845 | 0.7944 | 2.5e-07 | 24 |
0.0504 | 0.8665 | 0.7672 | 0.0470 | 0.8846 | 0.7946 | 2.5e-07 | 25 |
0.0502 | 0.8677 | 0.7686 | 0.0472 | 0.8844 | 0.7943 | 2.5e-07 | 26 |
0.0502 | 0.8662 | 0.7667 | 0.0477 | 0.8833 | 0.7925 | 2.5e-07 | 27 |
0.0507 | 0.8667 | 0.7670 | 0.0462 | 0.8853 | 0.7957 | 1.25e-08 | 28 |
0.0495 | 0.8685 | 0.7701 | 0.0475 | 0.8841 | 0.7937 | 1.25e-08 | 29 |
0.0503 | 0.8669 | 0.7676 | 0.0472 | 0.8840 | 0.7936 | 1.25e-08 | 30 |
0.0495 | 0.8689 | 0.7704 | 0.0471 | 0.8854 | 0.7959 | 1.25e-08 | 31 |
0.0496 | 0.8681 | 0.7693 | 0.0474 | 0.8844 | 0.7942 | 1.25e-08 | 32 |
0.0502 | 0.8665 | 0.7667 | 0.0480 | 0.8823 | 0.7912 | 1.25e-08 | 33 |
0.0499 | 0.8663 | 0.7668 | 0.0467 | 0.8852 | 0.7955 | 6.25e-10 | 34 |
0.0498 | 0.8668 | 0.7676 | 0.0471 | 0.8844 | 0.7943 | 6.25e-10 | 35 |
0.0505 | 0.8653 | 0.7653 | 0.0480 | 0.8821 | 0.7908 | 6.25e-10 | 36 |
0.0497 | 0.8687 | 0.7702 | 0.0471 | 0.8847 | 0.7947 | 6.25e-10 | 37 |
0.0506 | 0.8660 | 0.7662 | 0.0476 | 0.8838 | 0.7935 | 6.25e-10 | 38 |
0.0499 | 0.8678 | 0.7688 | 0.0473 | 0.8849 | 0.7951 | 1e-10 | 39 |
0.0499 | 0.8668 | 0.7676 | 0.0476 | 0.8839 | 0.7935 | 1e-10 | 40 |
0.0500 | 0.8672 | 0.7679 | 0.0478 | 0.8829 | 0.7921 | 1e-10 | 41 |
0.0500 | 0.8670 | 0.7677 | 0.0468 | 0.8845 | 0.7944 | 1e-10 | 42 |
0.0502 | 0.8668 | 0.7673 | 0.0474 | 0.8837 | 0.7932 | 1e-10 | 43 |
0.0500 | 0.8666 | 0.7671 | 0.0476 | 0.8832 | 0.7926 | 1e-10 | 44 |
0.0495 | 0.8682 | 0.7695 | 0.0474 | 0.8839 | 0.7935 | 1e-10 | 45 |
0.0495 | 0.8680 | 0.7690 | 0.0474 | 0.8842 | 0.7938 | 1e-10 | 46 |
0.0502 | 0.8666 | 0.7671 | 0.0474 | 0.8840 | 0.7937 | 1e-10 | 47 |
0.0501 | 0.8668 | 0.7673 | 0.0473 | 0.8840 | 0.7936 | 1e-10 | 48 |
0.0498 | 0.8676 | 0.7686 | 0.0470 | 0.8842 | 0.7939 | 1e-10 | 49 |
0.0495 | 0.8677 | 0.7690 | 0.0477 | 0.8831 | 0.7924 | 1e-10 | 50 |
0.0496 | 0.8694 | 0.7713 | 0.0471 | 0.8846 | 0.7945 | 1e-10 | 51 |
0.0496 | 0.8686 | 0.7699 | 0.0467 | 0.8851 | 0.7953 | 1e-10 | 52 |
0.0495 | 0.8688 | 0.7701 | 0.0469 | 0.8848 | 0.7949 | 1e-10 | 53 |
0.0497 | 0.8677 | 0.7686 | 0.0468 | 0.8848 | 0.7950 | 1e-10 | 54 |
0.0492 | 0.8689 | 0.7704 | 0.0473 | 0.8845 | 0.7944 | 1e-10 | 55 |
0.0498 | 0.8678 | 0.7687 | 0.0473 | 0.8837 | 0.7932 | 1e-10 | 56 |
0.0502 | 0.8668 | 0.7672 | 0.0471 | 0.8838 | 0.7934 | 1e-10 | 57 |
0.0497 | 0.8670 | 0.7676 | 0.0469 | 0.8840 | 0.7936 | 1e-10 | 58 |
0.0500 | 0.8680 | 0.7690 | 0.0473 | 0.8837 | 0.7933 | 1e-10 | 59 |
0.0497 | 0.8681 | 0.7692 | 0.0467 | 0.8840 | 0.7937 | 1e-10 | 60 |
0.0496 | 0.8685 | 0.7694 | 0.0474 | 0.8844 | 0.7944 | 1e-10 | 61 |
0.0506 | 0.8659 | 0.7660 | 0.0474 | 0.8838 | 0.7933 | 1e-10 | 62 |
0.0496 | 0.8677 | 0.7689 | 0.0472 | 0.8850 | 0.7953 | 1e-10 | 63 |
0.0498 | 0.8669 | 0.7675 | 0.0468 | 0.8836 | 0.7930 | 1e-10 | 64 |
0.0498 | 0.8675 | 0.7684 | 0.0471 | 0.8843 | 0.7942 | 1e-10 | 65 |
0.0499 | 0.8680 | 0.7691 | 0.0472 | 0.8842 | 0.7941 | 1e-10 | 66 |
0.0499 | 0.8677 | 0.7688 | 0.0474 | 0.8835 | 0.7928 | 1e-10 | 67 |
0.0501 | 0.8655 | 0.7656 | 0.0466 | 0.8855 | 0.7960 | 1e-10 | 68 |
0.0499 | 0.8673 | 0.7682 | 0.0480 | 0.8825 | 0.7913 | 1e-10 | 69 |
0.0494 | 0.8682 | 0.7698 | 0.0470 | 0.8851 | 0.7955 | 1e-10 | 70 |
0.0499 | 0.8676 | 0.7685 | 0.0475 | 0.8837 | 0.7932 | 1e-10 | 71 |
0.0500 | 0.8672 | 0.7681 | 0.0467 | 0.8855 | 0.7960 | 1e-10 | 72 |
0.0502 | 0.8662 | 0.7664 | 0.0473 | 0.8829 | 0.7919 | 1e-10 | 73 |
0.0498 | 0.8670 | 0.7679 | 0.0474 | 0.8846 | 0.7947 | 1e-10 | 74 |
0.0501 | 0.8665 | 0.7671 | 0.0480 | 0.8827 | 0.7916 | 1e-10 | 75 |
0.0493 | 0.8677 | 0.7689 | 0.0473 | 0.8836 | 0.7930 | 1e-10 | 76 |
0.0496 | 0.8678 | 0.7687 | 0.0474 | 0.8843 | 0.7942 | 1e-10 | 77 |
0.0495 | 0.8679 | 0.7689 | 0.0472 | 0.8844 | 0.7943 | 1e-10 | 78 |
0.0496 | 0.8679 | 0.7690 | 0.0470 | 0.8846 | 0.7945 | 1e-10 | 79 |
0.0501 | 0.8673 | 0.7683 | 0.0473 | 0.8836 | 0.7931 | 1e-10 | 80 |
0.0497 | 0.8679 | 0.7691 | 0.0471 | 0.8839 | 0.7936 | 1e-10 | 81 |
0.0496 | 0.8681 | 0.7693 | 0.0475 | 0.8836 | 0.7931 | 1e-10 | 82 |
0.0495 | 0.8689 | 0.7703 | 0.0474 | 0.8836 | 0.7930 | 1e-10 | 83 |
0.0496 | 0.8685 | 0.7697 | 0.0470 | 0.8845 | 0.7945 | 1e-10 | 84 |
0.0504 | 0.8665 | 0.7669 | 0.0477 | 0.8833 | 0.7926 | 1e-10 | 85 |
0.0496 | 0.8677 | 0.7690 | 0.0478 | 0.8830 | 0.7921 | 1e-10 | 86 |
0.0493 | 0.8682 | 0.7694 | 0.0470 | 0.8837 | 0.7931 | 1e-10 | 87 |
0.0495 | 0.8677 | 0.7688 | 0.0475 | 0.8835 | 0.7929 | 1e-10 | 88 |
0.0499 | 0.8668 | 0.7673 | 0.0471 | 0.8844 | 0.7942 | 1e-10 | 89 |
0.0495 | 0.8682 | 0.7694 | 0.0476 | 0.8836 | 0.7930 | 1e-10 | 90 |
0.0499 | 0.8672 | 0.7679 | 0.0475 | 0.8835 | 0.7929 | 1e-10 | 91 |
0.0496 | 0.8676 | 0.7685 | 0.0478 | 0.8831 | 0.7923 | 1e-10 | 92 |
0.0500 | 0.8677 | 0.7686 | 0.0475 | 0.8838 | 0.7934 | 1e-10 | 93 |
0.0495 | 0.8677 | 0.7686 | 0.0471 | 0.8837 | 0.7931 | 1e-10 | 94 |
0.0494 | 0.8680 | 0.7691 | 0.0473 | 0.8835 | 0.7930 | 1e-10 | 95 |
0.0500 | 0.8656 | 0.7659 | 0.0465 | 0.8848 | 0.7950 | 1e-10 | 96 |
0.0494 | 0.8678 | 0.7690 | 0.0477 | 0.8821 | 0.7907 | 1e-10 | 97 |
0.0498 | 0.8681 | 0.7691 | 0.0475 | 0.8843 | 0.7942 | 1e-10 | 98 |
0.0497 | 0.8670 | 0.7679 | 0.0477 | 0.8831 | 0.7923 | 1e-10 | 99 |
Framework versions
- Transformers 4.27.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 17