|
|
|
# Visual Semantic with BERT-CNN |
|
|
|
This model can be used to assign an object-to-caption semantic relatedness score, which is valuable for (1) caption diverse re-ranking (this work), |
|
and (2) (as an application) |
|
generating soft labels for filtering out the related/non-related image-to-post when scraping images from the internet (e.g. Instagram). |
|
|
|
|
|
To take advantage of the overlapping between the visual context and the caption, and to extract global information from each visual (i.e., object, scene, etc) we use BERT as an embedding layer followed by a shallow CNN (tri-gram kernel) (Kim, 2014). |
|
|
|
Please refer to [Github](https://github.com/ahmedssabir/Visual-Semantic-Relatedness-Dataset-for-Image-Captioning) for more information. |
|
|
|
[![arXiv](https://img.shields.io/badge/arXiv-2301.08784-b31b1b.svg)](https://arxiv.org/abs/2301.08784) [![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](https://ahmed.jp/project_page/Dataset_2022/index.html) |
|
|
|
|
|
For datasets that are less than 100K please have look at our [shallow model](https://github.com/ahmedssabir/Semantic-Relatedness-Based-Reranker-for-Text-Spotting) |
|
|
|
|
|
The model is trained with a strict filter of 0.4 similarity distance thresholds between the object and its related caption. |
|
|
|
For a quick start please have a look at this [demo](https://github.com/ahmedssabir/Textual-Visual-Semantic-Dataset/blob/main/BERT_CNN_Visual_re_ranker_demo.ipynb) |
|
|
|
|
|
For the [dataset](https://huggingface.co/datasets/AhmedSSabir/Textual-Image-Caption-Dataset) |
|
|
|
|
|
|
|
## # Result with SoTA pre-trained image Captioning BLIP |
|
|
|
|
|
Comparison result with BLIP (125M pre-trained images) [Table 7 COCO Caption Karpathy testset](https://arxiv.org/pdf/2201.12086.pdf). |
|
For the VilBERT model (3.5M pre-trained images) please refer to the paper. |
|
|
|
## Accuarcy |
|
|
|
| Model | B-1 | B-2 | B-3 | B-4 | M | R | C | S |BERTscore | |
|
|----------------------------------|---------|-------|--------|-------|--------|--------|-------|--------|---------| |
|
| BLIP Beam Search b=3 | .797 | .649 | **.514** | **.403** | **.311** | **.606** |**1.365** |**.243** | **.9484** | |
|
| + BERT-CNN $th=0$ | .798 | .646 | .506 | .392 | .305 | .598 | 1.339 | .238 | .9473 | |
|
| + BERT-CNN $th\geq0.2$ | .798 | .647 | .507 | .393 | .306 | .600 | 1.342 | .238 | .9473 | |
|
| + BERT-CNN $th\geq0.3$ | .802 | .651 | .511 | .397 | .307 | .601 | 1.349 | .238 | .9479 | |
|
| + BERT-CNN $th\geq0.4$ | **.806** | **.654** | .513 | .397 | .303 | .599 | 1.343 | .235 | .9476 | |
|
|
|
## Diversity |
|
|
|
| Model | Uniq | Voc | mBLeu-1↓ | Div-1 |Div-2 | SBERT-sts| |
|
|----------------------------------|---------|-------|----------|-------|-------|----------| |
|
| BLIP Beam Search b=3 | **8.60** | 1406 | .461 | .68 | .80 | .8058 | |
|
| + BERT-CNN $th=0$ | 8.49 | **1532** | .457 | .68 | .80 | .8046 | |
|
| + BERT-CNN $th\geq0.2$ | 8.48 | 1486 | .458 | .68 | .80 | .8052 | |
|
| + BERT-CNN $th\geq0.3$ | 8.41 | 1448 | .458 | .68 | .80 | **.8060** | |
|
| + BERT-CNN $th\geq0.4$ | 8.30 | 1448 | **.455** | .68 | .80 | .8053 | |
|
|human | 9.14 | 3425 | .375 | .74 | .84 | NA | |
|
|
|
|
|
|
|
|
|
``` |
|
conda create -n BERT_visual python=3.6 anaconda |
|
conda activate BERT_visual |
|
pip install tensorflow==1.15.0 |
|
pip install --upgrade tensorflow_hub==0.7.0 |
|
``` |
|
|
|
``` |
|
git clone https://github.com/gaphex/bert_experimental/ |
|
``` |
|
|
|
```python |
|
import tensorflow as tf |
|
import numpy as np |
|
import pandas as pd |
|
import sys |
|
from sklearn.model_selection import train_test_split |
|
|
|
sys.path.insert(0, "bert_experimental") |
|
|
|
from bert_experimental.finetuning.text_preprocessing import build_preprocessor |
|
from bert_experimental.finetuning.graph_ops import load_graph |
|
|
|
df = pd.read_csv("test.tsv", sep='\t') |
|
|
|
texts = [] |
|
delimiter = " ||| " |
|
|
|
for vis, cap in zip(df.visual.tolist(), df.caption.tolist()): |
|
texts.append(delimiter.join((str(vis), str(cap)))) |
|
|
|
texts = np.array(texts) |
|
|
|
trX, tsX = train_test_split(texts, shuffle=False, test_size=0.01) |
|
|
|
restored_graph = load_graph("frozen_graph.pb") |
|
|
|
graph_ops = restored_graph.get_operations() |
|
input_op, output_op = graph_ops[0].name, graph_ops[-1].name |
|
print(input_op, output_op) |
|
|
|
x = restored_graph.get_tensor_by_name(input_op + ':0') |
|
y = restored_graph.get_tensor_by_name(output_op + ':0') |
|
|
|
preprocessor = build_preprocessor("vocab.txt", 64) |
|
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor') |
|
|
|
##predictions |
|
sess = tf.Session(graph=restored_graph) |
|
|
|
print(trX[:4]) |
|
|
|
y = tf.print(y, summarize=-1) |
|
y_out = sess.run(y, feed_dict={ |
|
x: trX[:4].reshape((-1,1)) |
|
|
|
}) |
|
|
|
|
|
print(y_out) |
|
```` |
|
|
|
For training and inference |
|
|
|
``` |
|
python BERT_CNN.py --train train_0.4.tsv --epochs 5 |
|
``` |
|
|
|
|
|
```python |
|
# -*- coding: utf-8 -*- |
|
#!/bin/env python |
|
import sys |
|
import argparse |
|
import re |
|
import os |
|
import sys |
|
import json |
|
|
|
import logging |
|
import numpy as np |
|
import pandas as pd |
|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
from BertLayer import BertLayer |
|
from BertLayer import build_preprocessor |
|
from freeze_keras_model import freeze_keras_model |
|
|
|
from data_pre import * |
|
from tensorflow import keras |
|
from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
if not 'bert_repo' in sys.path: |
|
sys.path.insert(0, 'bert_repo') |
|
|
|
from modeling import BertModel, BertConfig |
|
from tokenization import FullTokenizer, convert_to_unicode |
|
from extract_features import InputExample, convert_examples_to_features |
|
|
|
|
|
# get TF logger |
|
log = logging.getLogger('tensorflow') |
|
log.handlers = [] |
|
|
|
|
|
parser=argparse.ArgumentParser() |
|
parser.add_argument('--train', default='train.tsv', help='beam serach', type=str,required=False) |
|
parser.add_argument('--num_bert_layer', default='12', help='truned layers', type=int,required=False) |
|
parser.add_argument('--batch_size', default='128', help='truned layers', type=int,required=False) |
|
parser.add_argument('--epochs', default='5', help='', type=int,required=False) |
|
parser.add_argument('--seq_len', default='64', help='', type=int,required=False) |
|
parser.add_argument('--CNN_kernel_size', default='3', help='', type=int,required=False) |
|
parser.add_argument('--CNN_filters', default='32', help='', type=int,required=False) |
|
args = parser.parse_args() |
|
|
|
|
|
# Downlaod the pre-trained model |
|
|
|
#!wget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip |
|
#!unzip uncased_L-12_H-768_A-12.zip |
|
|
|
|
|
# tf.Module |
|
def build_module_fn(config_path, vocab_path, do_lower_case=True): |
|
|
|
def bert_module_fn(is_training): |
|
"""Spec function for a token embedding module.""" |
|
|
|
input_ids = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_ids") |
|
input_mask = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_mask") |
|
token_type = tf.placeholder(shape=[None, None], dtype=tf.int32, name="segment_ids") |
|
|
|
config = BertConfig.from_json_file(config_path) |
|
model = BertModel(config=config, is_training=is_training, |
|
input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type) |
|
|
|
seq_output = model.all_encoder_layers[-1] |
|
pool_output = model.get_pooled_output() |
|
|
|
config_file = tf.constant(value=config_path, dtype=tf.string, name="config_file") |
|
vocab_file = tf.constant(value=vocab_path, dtype=tf.string, name="vocab_file") |
|
lower_case = tf.constant(do_lower_case) |
|
|
|
tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, config_file) |
|
tf.add_to_collection(tf.GraphKeys.ASSET_FILEPATHS, vocab_file) |
|
|
|
input_map = {"input_ids": input_ids, |
|
"input_mask": input_mask, |
|
"segment_ids": token_type} |
|
|
|
output_map = {"pooled_output": pool_output, |
|
"sequence_output": seq_output} |
|
|
|
output_info_map = {"vocab_file": vocab_file, |
|
"do_lower_case": lower_case} |
|
|
|
hub.add_signature(name="tokens", inputs=input_map, outputs=output_map) |
|
hub.add_signature(name="tokenization_info", inputs={}, outputs=output_info_map) |
|
|
|
return bert_module_fn |
|
|
|
|
|
#MODEL_DIR = "uncased_L-12_H-768_A-12" |
|
config_path = "/{}/bert_config.json".format(MODEL_DIR) |
|
vocab_path = "/{}/vocab.txt".format(MODEL_DIR) |
|
|
|
|
|
tags_and_args = [] |
|
for is_training in (True, False): |
|
tags = set() |
|
if is_training: |
|
tags.add("train") |
|
tags_and_args.append((tags, dict(is_training=is_training))) |
|
|
|
module_fn = build_module_fn(config_path, vocab_path) |
|
spec = hub.create_module_spec(module_fn, tags_and_args=tags_and_args) |
|
spec.export("bert-module", |
|
checkpoint_path="/{}/bert_model.ckpt".format(MODEL_DIR)) |
|
|
|
class BertLayer(tf.keras.layers.Layer): |
|
def __init__(self, bert_path, seq_len=64, n_tune_layers=3, |
|
pooling="cls", do_preprocessing=True, verbose=False, |
|
tune_embeddings=False, trainable=True, **kwargs): |
|
|
|
self.trainable = trainable |
|
self.n_tune_layers = n_tune_layers |
|
self.tune_embeddings = tune_embeddings |
|
self.do_preprocessing = do_preprocessing |
|
|
|
self.verbose = verbose |
|
self.seq_len = seq_len |
|
self.pooling = pooling |
|
self.bert_path = bert_path |
|
|
|
self.var_per_encoder = 16 |
|
if self.pooling not in ["cls", "mean", None]: |
|
raise NameError( |
|
f"Undefined pooling type (must be either 'cls', 'mean', or None, but is {self.pooling}" |
|
) |
|
|
|
super(BertLayer, self).__init__(**kwargs) |
|
|
|
def build(self, input_shape): |
|
|
|
self.bert = hub.Module(self.build_abspath(self.bert_path), |
|
trainable=self.trainable, name=f"{self.name}_module") |
|
|
|
trainable_layers = [] |
|
if self.tune_embeddings: |
|
trainable_layers.append("embeddings") |
|
|
|
if self.pooling == "cls": |
|
trainable_layers.append("pooler") |
|
|
|
if self.n_tune_layers > 0: |
|
encoder_var_names = [var.name for var in self.bert.variables if 'encoder' in var.name] |
|
n_encoder_layers = int(len(encoder_var_names) / self.var_per_encoder) |
|
for i in range(self.n_tune_layers): |
|
trainable_layers.append(f"encoder/layer_{str(n_encoder_layers - 1 - i)}/") |
|
|
|
# Add module variables to layer's trainable weights |
|
for var in self.bert.variables: |
|
if any([l in var.name for l in trainable_layers]): |
|
self._trainable_weights.append(var) |
|
else: |
|
self._non_trainable_weights.append(var) |
|
|
|
if self.verbose: |
|
print("*** TRAINABLE VARS *** ") |
|
for var in self._trainable_weights: |
|
print(var) |
|
|
|
self.build_preprocessor() |
|
self.initialize_module() |
|
|
|
super(BertLayer, self).build(input_shape) |
|
|
|
def build_abspath(self, path): |
|
if path.startswith("https://") or path.startswith("gs://"): |
|
return path |
|
else: |
|
return os.path.abspath(path) |
|
|
|
def build_preprocessor(self): |
|
sess = tf.keras.backend.get_session() |
|
tokenization_info = self.bert(signature="tokenization_info", as_dict=True) |
|
vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"], |
|
tokenization_info["do_lower_case"]]) |
|
self.preprocessor = build_preprocessor(vocab_file, self.seq_len, do_lower_case) |
|
|
|
def initialize_module(self): |
|
sess = tf.keras.backend.get_session() |
|
|
|
vars_initialized = sess.run([tf.is_variable_initialized(var) |
|
for var in self.bert.variables]) |
|
|
|
uninitialized = [] |
|
for var, is_initialized in zip(self.bert.variables, vars_initialized): |
|
if not is_initialized: |
|
uninitialized.append(var) |
|
|
|
if len(uninitialized): |
|
sess.run(tf.variables_initializer(uninitialized)) |
|
|
|
def call(self, input): |
|
|
|
if self.do_preprocessing: |
|
input = tf.numpy_function(self.preprocessor, |
|
[input], [tf.int32, tf.int32, tf.int32], |
|
name='preprocessor') |
|
for feature in input: |
|
feature.set_shape((None, self.seq_len)) |
|
|
|
input_ids, input_mask, segment_ids = input |
|
|
|
bert_inputs = dict( |
|
input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids |
|
) |
|
output = self.bert(inputs=bert_inputs, signature="tokens", as_dict=True) |
|
|
|
if self.pooling == "cls": |
|
pooled = output["pooled_output"] |
|
else: |
|
result = output["sequence_output"] |
|
|
|
input_mask = tf.cast(input_mask, tf.float32) |
|
mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1) |
|
masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / ( |
|
tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10) |
|
|
|
if self.pooling == "mean": |
|
pooled = masked_reduce_mean(result, input_mask) |
|
else: |
|
pooled = mul_mask(result, input_mask) |
|
|
|
return pooled |
|
|
|
def get_config(self): |
|
config_dict = { |
|
"bert_path": self.bert_path, |
|
"seq_len": self.seq_len, |
|
"pooling": self.pooling, |
|
"n_tune_layers": self.n_tune_layers, |
|
"tune_embeddings": self.tune_embeddings, |
|
"do_preprocessing": self.do_preprocessing, |
|
"verbose": self.verbose |
|
} |
|
super(BertLayer, self).get_config() |
|
return config_dict |
|
|
|
|
|
# read the train data |
|
df = pd.read_csv(args.train, sep='\t') |
|
|
|
|
|
labels = df.is_related.values |
|
|
|
texts = [] |
|
delimiter = " ||| " |
|
|
|
for vis, cap in zip(df.visual.tolist(), df.caption.tolist()): |
|
texts.append(delimiter.join((str(vis), str(cap)))) |
|
|
|
|
|
texts = np.array(texts) |
|
|
|
trX, tsX, trY, tsY = train_test_split(texts, labels, shuffle=True, test_size=0.2) |
|
|
|
|
|
# Buliding the model |
|
embedding_size = 768 |
|
|
|
# input |
|
inp = tf.keras.Input(shape=(1,), dtype=tf.string) |
|
|
|
# BERT encoder |
|
# For CLS with linear layer |
|
#encoder = BertLayer(bert_path="./bert-module/", seq_len=48, tune_embeddings=False, |
|
# pooling='cls', n_tune_layers=3, verbose=False) |
|
|
|
|
|
# CNN Layers |
|
encoder = BertLayer(bert_path="./bert-module/", seq_len=args.seq_len, tune_embeddings=False, pooling=None, n_tune_layers=args.num_bert_layer, verbose=False) |
|
cnn_out = tf.keras.layers.Conv1D(args.CNN_filters, args.CNN_kernel_size, padding='VALID', activation=tf.nn.relu)(encoder(inp)) |
|
pool = tf.keras.layers.MaxPooling1D(pool_size=2)(cnn_out) |
|
flat = tf.keras.layers.Flatten()(pool) |
|
pred = tf.keras.layers.Dense(1, activation="sigmoid")(flat) |
|
|
|
|
|
model = tf.keras.models.Model(inputs=[inp], outputs=[pred]) |
|
|
|
model.summary() |
|
|
|
model.compile( |
|
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5, ), |
|
loss="binary_crossentropy", |
|
metrics=["accuracy"]) |
|
|
|
# fit the data |
|
import logging |
|
logging.getLogger("tensorflow").setLevel(logging.WARNING) |
|
|
|
saver = keras.callbacks.ModelCheckpoint("bert_CNN_tuned.hdf5") |
|
|
|
model.fit(trX, trY, validation_data=[tsX, tsY], batch_size=args.batch_size, epochs=args.epochs, callbacks=[saver]) |
|
|
|
#save the model |
|
model.predict(trX[:10]) |
|
|
|
import json |
|
json.dump(model.to_json(), open("model.json", "w")) |
|
|
|
model = tf.keras.models.model_from_json(json.load(open("model.json")), |
|
custom_objects={"BertLayer": BertLayer}) |
|
|
|
model.load_weights("bert_CNN_tuned.hdf5") |
|
|
|
model.predict(trX[:10]) |
|
|
|
# For fast inference and less RAM usesage as post-processing we need to "freezing" the model. |
|
from tensorflow.python.framework.graph_util import convert_variables_to_constants |
|
from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference |
|
|
|
def freeze_keras_model(model, export_path=None, clear_devices=True): |
|
sess = tf.keras.backend.get_session() |
|
graph = sess.graph |
|
|
|
with graph.as_default(): |
|
|
|
input_tensors = model.inputs |
|
output_tensors = model.outputs |
|
dtypes = [t.dtype.as_datatype_enum for t in input_tensors] |
|
input_ops = [t.name.rsplit(":", maxsplit=1)[0] for t in input_tensors] |
|
output_ops = [t.name.rsplit(":", maxsplit=1)[0] for t in output_tensors] |
|
|
|
tmp_g = graph.as_graph_def() |
|
if clear_devices: |
|
for node in tmp_g.node: |
|
node.device = "" |
|
|
|
tmp_g = optimize_for_inference( |
|
tmp_g, input_ops, output_ops, dtypes, False) |
|
|
|
tmp_g = convert_variables_to_constants(sess, tmp_g, output_ops) |
|
|
|
if export_path is not None: |
|
with tf.gfile.GFile(export_path, "wb") as f: |
|
f.write(tmp_g.SerializeToString()) |
|
|
|
return tmp_g |
|
|
|
|
|
# freeze and save the model |
|
frozen_graph = freeze_keras_model(model, export_path="frozen_graph.pb") |
|
|
|
|
|
# inference |
|
#!git clone https://github.com/gaphex/bert_experimental/ |
|
|
|
import tensorflow as tf |
|
import numpy as np |
|
import sys |
|
|
|
sys.path.insert(0, "bert_experimental") |
|
|
|
from bert_experimental.finetuning.text_preprocessing import build_preprocessor |
|
from bert_experimental.finetuning.graph_ops import load_graph |
|
|
|
|
|
restored_graph = load_graph("frozen_graph.pb") |
|
graph_ops = restored_graph.get_operations() |
|
input_op, output_op = graph_ops[0].name, graph_ops[-1].name |
|
print(input_op, output_op) |
|
|
|
x = restored_graph.get_tensor_by_name(input_op + ':0') |
|
y = restored_graph.get_tensor_by_name(output_op + ':0') |
|
|
|
|
|
preprocessor = build_preprocessor("vocab.txt", 64) |
|
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor') |
|
|
|
py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32]) |
|
|
|
# predictions |
|
sess = tf.Session(graph=restored_graph) |
|
|
|
trX[:10] |
|
|
|
y_out = sess.run(y, feed_dict={ |
|
x: trX[:10].reshape((-1,1)) |
|
}) |
|
|
|
print(y_out) |
|
|
|
|
|
``` |