File size: 13,686 Bytes
22488c1 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7971c6d0fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7971c6d0feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7971c6d0ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7971c6d14040>", "_build": "<function ActorCriticPolicy._build at 0x7971c6d140d0>", "forward": "<function ActorCriticPolicy.forward at 0x7971c6d14160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7971c6d141f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7971c6d14280>", "_predict": "<function ActorCriticPolicy._predict at 0x7971c6d14310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7971c6d143a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7971c6d14430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7971c6d144c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7971c6d06980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689403380123629662, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB87r20SRc+4hyGPku8nL6U1g89UsfuugAAAAAAAAAAAEhkPIMzXbwLItK89/V3PFSXer1bWZK9AACAPwAAgD9aYPW90JyMPvKa8D2UYry+Xd6kvfbpJj0AAAAAAAAAAKZ97T07ZPs9KPZGvaUjib7n8AK9BWxpPQAAAAAAAAAAmtraPXxFeD3Jo0c9+YotvlsJGT3Me6s9AAAAAAAAAABTpi0+3xJyP///LT6kJu2+aAlEPiNCVTwAAAAAAAAAADP5SD77Lta8chUDuy5fijkAdD++kuYzOgAAgD8AAIA/AKz1PMMXNrx4hnA9kPz3PEaJR70aDpu9AACAPwAAgD/mHcS9iW6iP643Ab/wAha/DurFvVd0pr4AAAAAAAAAADPadT3PWni8rzoHPIblvTwmH949/leXvQAAgD8AAIA/WlKpPdOquD8h7aA+hXKOvnZCvT2yZpA9AAAAAAAAAADNoS89QYWivIXku73xMzW+PhADPrqkPD8AAIA/AACAPwBwYLt7CJi6mFSdu3NUlDxUZ2+8yzqAPQAAgD8AAIA/c5YOvjOYAz+YWzw+7IbKvqJZpb3SCEU+AAAAAAAAAACaXK89NCaCvOa7Fb4sb/K9KpTmPUETET8AAIA/AACAP07amL52fIk/obSJvrHnGr+JAte+hcK1vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFqxy8zyjKMAWyUS9CMAXSUR0Chq1tKIznBdX2UKGgGR0BwUMQpWmxdaAdNHQFoCEdAoatz5Kvmo3V9lChoBkdAcmVJfpljE2gHTQQBaAhHQKGrfwDvE0l1fZQoaAZHQHAhakhzNlloB0vkaAhHQKGrvDaXa8J1fZQoaAZHQHDRBAbADaJoB00EAWgIR0Chq/R0uDjBdX2UKGgGR0BxjqIGhVU/aAdL/GgIR0ChrDpvxYq5dX2UKGgGR0BwvbBEa2nbaAdNDAFoCEdAoaxWD6Fds3V9lChoBkdAbKnyVfNRnGgHTQQBaAhHQKGseDK5kLB1fZQoaAZHQHJrrVrhzeZoB0vuaAhHQKGsvQLNOdp1fZQoaAZHQHHzYcFQl8hoB02NAWgIR0ChrMHxSYPYdX2UKGgGR0BuWwemvW6LaAdL4GgIR0ChrNRJd0JXdX2UKGgGR0Bx8Re1KGtZaAdNAgFoCEdAoa0fWrfce3V9lChoBkdAUnGQ3gk1M2gHS5FoCEdAoa1FKTSssHV9lChoBkdAcksUz9CNTGgHTQwBaAhHQKGtUSBbwBp1fZQoaAZHQF7r+DOC5EtoB03oA2gIR0Chrg7W3BpIdX2UKGgGR0BvweX3QD3eaAdNPQFoCEdAoa56+8Gs3nV9lChoBkdAbwkgK4QSSWgHS/NoCEdAoa60WweNk3V9lChoBkdAcTEajN6gNGgHS/9oCEdAoa7/z19ORHV9lChoBkdAcb8jPv8ZUGgHS9loCEdAoa8tNtZV43V9lChoBkdAcqUo0ALiM2gHS/5oCEdAoa84FTvRZ3V9lChoBkdAcPU91loUSWgHS9loCEdAoa9JkbxVhnV9lChoBkdAcB0LrHEMs2gHS9NoCEdAoa9QXVLBbnV9lChoBkdAb5Gg+yJKrmgHTTUBaAhHQKGvtD/EOy51fZQoaAZHQHBc0EgW8AdoB0vlaAhHQKGv0FRpDeF1fZQoaAZHQCVT7l7tzCFoB0u/aAhHQKGv3QyAQQN1fZQoaAZHQG04vBBRhttoB0v0aAhHQKGwE1IAfdR1fZQoaAZHQG4vuAy2x6hoB0vpaAhHQKGwafKZDzB1fZQoaAZHQHAptahYeT5oB0v8aAhHQKGweVSn+AF1fZQoaAZHQHBDh4MWoFVoB0v6aAhHQKGxYaqCHyp1fZQoaAZHQHEXo2n889xoB02nAWgIR0ChsaUf5k9VdX2UKGgGR0Bwd6pGWldkaAdNAQFoCEdAobHvo5ggHXV9lChoBkdAcE7rj5sTFmgHTQcBaAhHQKGyQ+7Dl5p1fZQoaAZHQHJAESqU/wBoB0v+aAhHQKGypuIhyKh1fZQoaAZHQHOtbqQiiZhoB0vZaAhHQKGyr7cfvF51fZQoaAZHQHKw9TUAks1oB00TAWgIR0ChssuR9w3pdX2UKGgGR0BzJY8La24NaAdL/2gIR0ChstK2jO9ndX2UKGgGR0BxNGKYRdyDaAdNKQFoCEdAobNeF+NLlHV9lChoBkdAcb0Ijnmq52gHTS4BaAhHQKGzgu/UONJ1fZQoaAZHQHLgpQUHpr1oB00CAWgIR0Chs4WQOnVHdX2UKGgGR0BzZppBX0XhaAdNDwFoCEdAobOiKHfuTnV9lChoBkdAdBQw++ueSWgHS+9oCEdAobPg3rD633V9lChoBkdAcj56NlyzX2gHS9FoCEdAobRWxhUip3V9lChoBkdAcF4xVAAyVWgHS+1oCEdAobT96mfoR3V9lChoBkdAbWplzU7SzGgHS9xoCEdAobVhvDP4VXV9lChoBkdAbwrK9wm3OWgHS/VoCEdAobVpz3h4uHV9lChoBkdATZH8dgfEGmgHS8VoCEdAobWGOQyRCHV9lChoBkdAcpfXarWAgGgHS+poCEdAobX1XDFZPnV9lChoBkdAcknYgq3EymgHTZQBaAhHQKG2IshgVoJ1fZQoaAZHQG3gQP7N0NloB0v6aAhHQKG2Ui0v4/N1fZQoaAZHQHApZvLowEhoB00IAWgIR0Chtl58a4tpdX2UKGgGR0BupcGFBY3eaAdL6WgIR0ChtpIz3yqddX2UKGgGR0BxgAFs54nnaAdL6mgIR0ChtrjRD1GtdX2UKGgGR0BzwUzBRAKOaAdL6GgIR0Chts49ovi+dX2UKGgGR0BwSjuE25xzaAdL+GgIR0ChtuLRKHwgdX2UKGgGR0Bxri37UG3XaAdN7QFoCEdAobb0QEpy63V9lChoBkdAccPW9lEqlWgHS/JoCEdAobco2n8893V9lChoBkdAcaERNyo4uWgHS+doCEdAobd595QgtHV9lChoBkdAcc4CaJAMUmgHTRwBaAhHQKG4xhFVktp1fZQoaAZHQG+I/EXLvCxoB00CAWgIR0ChuMYqG1x9dX2UKGgGR0BNlZNXYDkmaAdLsWgIR0ChuM2pAD7qdX2UKGgGR0BQh7+glF+eaAdLo2gIR0ChuPQT238XdX2UKGgGR0BvhUvEjxCqaAdNCAFoCEdAobkB7TlT33V9lChoBkdAcEH7yhBZ6mgHS/FoCEdAoblKxLTQV3V9lChoBkdAcdmCT2WY4WgHTSgBaAhHQKG5XLV4HHF1fZQoaAZHQHE3rHdXT3JoB0vpaAhHQKG5aDGtITZ1fZQoaAZHQHCnouK4x1xoB0vmaAhHQKG50jqv/zd1fZQoaAZHQG36R/3Fkx1oB00XAWgIR0Chuf20Re1KdX2UKGgGR0BtecZxaPjoaAdNOgFoCEdAoboiBNEgGXV9lChoBkdAb7KPTXrdFmgHS/xoCEdAobpD1kDp1XV9lChoBkdAXJsm0E5hjWgHTegDaAhHQKG6U3gk1Mx1fZQoaAZHQHPVqRp1zQxoB00RAWgIR0ChusbDEWIodX2UKGgGR0BzOml3yI56aAdNWwFoCEdAobtDG96C2HV9lChoBkdAc3H9b5dnkGgHS89oCEdAobuepCKJmHV9lChoBkdAcWdBNmDlHWgHS+toCEdAobv77fpD/nV9lChoBkdAc60xUedTYWgHS8xoCEdAobwnpnpSrHV9lChoBkdAc3Wa9sabWmgHTQwBaAhHQKG8dleWv8t1fZQoaAZHQHKVI5T6zmhoB0vfaAhHQKG87OObRWt1fZQoaAZHQHI7r17IDHRoB00kAWgIR0ChvRJ3xFy8dX2UKGgGR0ByNCpqASWaaAdL0WgIR0ChvUG5MDfWdX2UKGgGR0BvehBiTdLyaAdNIwFoCEdAob2AxtYSx3V9lChoBkdAbKU9Htnf22gHS/doCEdAob2ygmJFb3V9lChoBkdAcUnqptJnQWgHS+5oCEdAob5ctAcDKnV9lChoBkdAcdLhl18stmgHTTYBaAhHQKG+icEvCdl1fZQoaAZHQHOE7HQyAQRoB00QAWgIR0Chv7mW2PT5dX2UKGgGR0ByhX9P1tfpaAdL6mgIR0ChwA9G7SRbdX2UKGgGR0Bx+Q7yQPqcaAdL7mgIR0ChwHMguAZsdX2UKGgGR0BxnwEwFkhBaAdN2gFoCEdAocCU8HObAnV9lChoBkdAcK0Nke6qbWgHTR8BaAhHQKHAuVs1sLx1fZQoaAZHQG04jfWMCLdoB00CAWgIR0ChwWicoYvWdX2UKGgGR0BurxV4oqkNaAdNqwFoCEdAocG1jwx33nV9lChoBkdAcCZaisXBQGgHS+xoCEdAocG7YbsF+3V9lChoBkdAc6JR9PUKA2gHS+RoCEdAocHMfq5byHV9lChoBkdAcnqB5X2du2gHS+toCEdAocI/Uz9CNXV9lChoBkdAcgJ18b70nWgHS+ZoCEdAocJooG6f8XV9lChoBkdAcal5IH1OCWgHTTQBaAhHQKHDEcTakAR1fZQoaAZHQHMCYPkJa7poB01UAmgIR0Chw6UPxx1gdX2UKGgGR0Bw4vOpsGgSaAdNAwFoCEdAocQnaBZpz3V9lChoBkdAcaRrELpiZ2gHTRgBaAhHQKHEXpudf9h1fZQoaAZHQHHtzMA3kxRoB0vbaAhHQKHE36UJOWV1fZQoaAZHQHINs+3Ytg9oB0vyaAhHQKHFFGax5cF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |