KnowledgeNinja-LiteLlama-460Mx6MoE-1T
KnowledgeNinja-LiteLlama-460Mx6MoE-1T is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- ahxt/LiteLlama-460M-1T
- ahxt/LiteLlama-460M-1T
- ahxt/LiteLlama-460M-1T
- ahxt/LiteLlama-460M-1T
- ahxt/LiteLlama-460M-1T
- ahxt/LiteLlama-460M-1T
𧩠Configuration
base_model: ahxt/LiteLlama-460M-1T
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: ahxt/LiteLlama-460M-1T
positive_prompts: ["Accounting"]
- source_model: ahxt/LiteLlama-460M-1T
positive_prompts: ["Finance"]
- source_model: ahxt/LiteLlama-460M-1T
positive_prompts: ["Strategy"]
- source_model: ahxt/LiteLlama-460M-1T
positive_prompts: ["Marketing"]
- source_model: ahxt/LiteLlama-460M-1T
positive_prompts: ["Organizational Behaviour"]
- source_model: ahxt/LiteLlama-460M-1T
positive_prompts: ["Economics"]
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "AkiGogikar/KnowledgeNinja-LiteLlama-460Mx6MoE-1T"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 30.23 |
AI2 Reasoning Challenge (25-Shot) | 25.17 |
HellaSwag (10-Shot) | 38.45 |
MMLU (5-Shot) | 26.16 |
TruthfulQA (0-shot) | 41.57 |
Winogrande (5-shot) | 50.04 |
GSM8k (5-shot) | 0.00 |
- Downloads last month
- 1,211
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Space using AkiGogikar/KnowledgeNinja-LiteLlama-460Mx6MoE-1T 1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard25.170
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard38.450
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard26.160
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard41.570
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard50.040
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.000