autoevaluator's picture
Add evaluation results on the adversarialQA config and validation split of adversarial_qa
a97e8d6
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - squad
model-index:
  - name: bert-finetuned-squad
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: adversarial_qa
          type: adversarial_qa
          config: adversarialQA
          split: validation
        metrics:
          - type: f1
            value: 32.3397
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzQ4MzMyZDgzOGRlMjI5MGI2NTU5M2FkMWI5ZDFmMTc0MjczZDU0MzU3YjE2YzRmNjgyMDhjZWI2MTljNGRjNCIsInZlcnNpb24iOjF9.fhrHqXSNMRf79P-fz_uF9zu-q1kmgRrUrwpArmbeUbsBzghFMNlixjGBj0DjRSqNowZx-rPOJEjUfmy6IoKRBA
          - type: exact_match
            value: 21.0333
            name: Exact Match
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk0ZmFmZjA2NThhMjUyYTgwMzM0MjY1Nzg4ZDZmMDkxOTAyOGU0MTI1ZGE3YjMzOTQ3OThlNjFjMTA1NTNmOCIsInZlcnNpb24iOjF9.B3Z30EVq3nftd2fymhabm0rsSop2HvWfnqDl46oyw20jRFwxuKJE3oF72iCGEAworlhC0hurbVMt-WgGj5XyBA
          - type: loss
            value: 3.934098243713379
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzg2MWQxZDY2MDE5M2RkZWNkZDkyOWVjNGNjMDg2ZWE0NTA2ZDFhZTEzYjNiN2YyMDAwZTQyZGJlOTc1NWQ0OSIsInZlcnNpb24iOjF9.i1npIhsmBnPp7HjlBTzl4q0sg1d25aYSy75ui47Fi9VU7oen50LSDoqn9FXvaU42zjXbsaoMX8CyV1PQe4MsBw

bert-finetuned-squad

This model is a fine-tuned version of bert-base-cased on the squad dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1