metadata
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: BLOK_02.CR2
widget:
- text: >-
BLOK_02.CR2, 1905, full height, a best quality color photo portrait
of Alexander Blok writing a poem in 1905, curly hair, Edwardian coat
output:
url: images/example_y2ucjfyiz.png
- text: >-
young BLOK_02.CR2 in Petersburg, 1905, full height, a best quality color
photo portrait of Alexander Blok strolling in St Petersburg in 1905 while
writing a poem in 1905, curly hair, Edwardian coat
output:
url: images/example_pat2lbcsh.png
- text: >-
Generated example for model
AlekseyCalvin/Alexander_BLOK_Flux_LoRA_SilverAgePoets_v3. Prompt: young
BLOK_02.CR2 in Petersburg, 1905, full height, a best quality color photo
portrait of Alexander Blok strolling in St Petersburg in 1905 while
writing a poem in 1905, curly hair, Edwardian coat
output:
url: images/example_bvut2tyo4.png
Alexander Blok FLUX Adapter Version 3 (aka "2_1")
Trigger words
You should use BLOK_02.CR2
to trigger the image generation.
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('AlekseyCalvin/BlokFlux2_1', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers