Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: WizardLM/WizardCoder-1B-V1.0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

hub_model_id: AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01
hub_strategy: every_save

load_in_8bit: false
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: AlekseyKorshuk/evol-codealpaca-v1-dpo
    split: train
    type: wizardcoder.intel


dataset_prepared_path:
#val_set_size: 0.001
output_dir: ./output

sequence_len: 2048
#sample_packing: false  # currently unsupported
pad_to_sequence_len:

lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: ultrachat-stable-code-3b-dpo-chatml-beta-0.01
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 8.0e-7
warmup_steps: 32
#warmup_ratio: 0.1
weight_decay: 0.01
dpo_beta: 0.01

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
#float16: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false


#evals_per_epoch: 5
#eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
#eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128

#chat_template: chatml
#saves_per_epoch: 1
save_steps: 500
save_total_limit: 1
seed: 42
debug:
deepspeed:


fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true

WizardCoder-1B-V1.0-dpo-beta-0.01

This model is a fine-tuned version of WizardLM/WizardCoder-1B-V1.0 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 32
  • training_steps: 312

Training results

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
14
Safetensors
Model size
1.14B params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AlekseyKorshuk/WizardCoder-1B-V1.0-dpo-beta-0.01

Finetuned
(2)
this model