See axolotl config
axolotl version: 0.4.0
base_model: WizardLM/WizardCoder-3B-V1.0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
hub_model_id: AlekseyKorshuk/WizardCoder-3B-V1.0-dpo-beta-0.01
hub_strategy: every_save
load_in_8bit: false
load_in_4bit: false
strict: false
rl: dpo
datasets:
- path: AlekseyKorshuk/evol-codealpaca-v1-dpo
split: train
type: wizardcoder.intel
dataset_prepared_path: last_run_prepared
#val_set_size: 0.001
output_dir: ./output
sequence_len: 2048
#sample_packing: false # currently unsupported
pad_to_sequence_len:
lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: WizardCoder-3B-V1.0-dpo-beta-0.01
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 8.0e-7
warmup_steps: 32
#warmup_ratio: 0.1
weight_decay: 0.01
dpo_beta: 0.01
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
#float16: false
#bfloat16: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
#evals_per_epoch: 5
#eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
#eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128
#chat_template: chatml
#saves_per_epoch: 1
save_steps: 500
save_total_limit: 1
seed: 42
debug:
deepspeed:
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
WizardCoder-3B-V1.0-dpo-beta-0.01
This model is a fine-tuned version of WizardLM/WizardCoder-3B-V1.0 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 32
- training_steps: 312
Training results
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AlekseyKorshuk/WizardCoder-3B-V1.0-dpo-beta-0.01
Base model
WizardLM/WizardCoder-3B-V1.0