AlekseyKorshuk's picture
update model card README.md
b9fed37
metadata
license: other
tags:
  - generated_from_trainer
datasets:
  - AlekseyKorshuk/dalio-all-io
metrics:
  - accuracy
model-index:
  - name: dalio-all-io-1.3b-2-epoch
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: AlekseyKorshuk/dalio-all-io
          type: AlekseyKorshuk/dalio-all-io
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.057553854065481976

dalio-all-io-1.3b-2-epoch

This model is a fine-tuned version of facebook/opt-1.3b on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2949
  • Accuracy: 0.0576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6543 0.03 1 2.6113 0.0513
2.6077 0.07 2 2.6113 0.0513
2.5964 0.1 3 2.5605 0.0519
2.7302 0.14 4 2.5234 0.0527
2.7002 0.17 5 2.5078 0.0529
2.5674 0.21 6 2.4941 0.0533
2.6399 0.24 7 2.4883 0.0534
2.533 0.28 8 2.4805 0.0536
2.7202 0.31 9 2.4746 0.0536
2.5137 0.34 10 2.4648 0.0534
2.499 0.38 11 2.4512 0.0536
2.7026 0.41 12 2.4414 0.0539
2.5254 0.45 13 2.4336 0.0543
2.5667 0.48 14 2.4238 0.0545
2.5715 0.52 15 2.4160 0.0548
2.3739 0.55 16 2.4102 0.0550
2.4756 0.59 17 2.4043 0.0549
2.4783 0.62 18 2.3984 0.0550
2.5665 0.66 19 2.3906 0.0549
2.4888 0.69 20 2.3906 0.0549
2.4476 0.72 21 2.3828 0.0550
2.604 0.76 22 2.375 0.0552
2.3416 0.79 23 2.3652 0.0554
2.6028 0.83 24 2.3555 0.0555
2.3425 0.86 25 2.3477 0.0558
2.4142 0.9 26 2.3398 0.0558
2.5317 0.93 27 2.3340 0.0559
2.4119 0.97 28 2.3301 0.0561
2.4048 1.0 29 2.3262 0.0563
1.9646 1.03 30 2.3242 0.0564
1.9233 1.07 31 2.3203 0.0563
1.9276 1.1 32 2.3203 0.0564
1.8702 1.14 33 2.3281 0.0565
2.0997 1.17 34 2.3340 0.0565
1.7943 1.21 35 2.3320 0.0568
1.8579 1.24 36 2.3242 0.0567
1.8844 1.28 37 2.3145 0.0568
1.9288 1.31 38 2.3086 0.0569
1.6616 1.34 39 2.3047 0.0570
1.6443 1.38 40 2.3047 0.0571
1.7616 1.41 41 2.3027 0.0572
1.7904 1.45 42 2.3027 0.0571
1.8762 1.48 43 2.3027 0.0573
1.6569 1.52 44 2.3027 0.0573
1.647 1.55 45 2.3027 0.0573
1.8168 1.59 46 2.3027 0.0574
1.7194 1.62 47 2.3027 0.0573
1.7667 1.66 48 2.3027 0.0572
1.7621 1.69 49 2.3027 0.0573
1.7269 1.72 50 2.3008 0.0573
1.7815 1.76 51 2.3008 0.0574
1.8318 1.79 52 2.2988 0.0574
1.9366 1.83 53 2.2988 0.0575
1.736 1.86 54 2.2969 0.0576
1.9984 1.9 55 2.2969 0.0575
1.7203 1.93 56 2.2949 0.0575
1.7391 1.97 57 2.2949 0.0576
1.6611 2.0 58 2.2949 0.0576

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1