Edit model card

swin-tiny-patch4-window7-224-finetuned-woody

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4349
  • Accuracy: 0.7927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.632 1.0 58 0.5883 0.6836
0.6067 2.0 116 0.6017 0.6848
0.5865 3.0 174 0.5695 0.7042
0.553 4.0 232 0.5185 0.7515
0.5468 5.0 290 0.5108 0.7430
0.5473 6.0 348 0.4882 0.7648
0.5381 7.0 406 0.4800 0.7588
0.5468 8.0 464 0.5056 0.7358
0.5191 9.0 522 0.4784 0.7673
0.5318 10.0 580 0.4762 0.7636
0.5079 11.0 638 0.4859 0.7673
0.5216 12.0 696 0.4691 0.7697
0.515 13.0 754 0.4857 0.7624
0.5186 14.0 812 0.4685 0.7733
0.4748 15.0 870 0.4536 0.7818
0.4853 16.0 928 0.4617 0.7770
0.4868 17.0 986 0.4622 0.7782
0.4572 18.0 1044 0.4583 0.7770
0.4679 19.0 1102 0.4590 0.7733
0.4508 20.0 1160 0.4576 0.7903
0.4663 21.0 1218 0.4542 0.7891
0.4533 22.0 1276 0.4428 0.7903
0.4892 23.0 1334 0.4372 0.7867
0.4704 24.0 1392 0.4414 0.7903
0.4304 25.0 1450 0.4430 0.7988
0.4411 26.0 1508 0.4348 0.7818
0.4604 27.0 1566 0.4387 0.7927
0.441 28.0 1624 0.4378 0.7964
0.442 29.0 1682 0.4351 0.7915
0.4585 30.0 1740 0.4349 0.7927

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.0
  • Tokenizers 0.13.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results