File size: 1,888 Bytes
6b1f885 b665bc6 6b1f885 b665bc6 915149c a99889b 6b1f885 b665bc6 6b1f885 b665bc6 6b1f885 a2534dc 6b1f885 ad47eda 6b1f885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
widget:
- src: https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/Mild-demented.jpg
example_title: Mild Demented
- src: https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/No-demented.jpg
example_title: Healthy
model-index:
- name: model-Dementia-classification-Alejandro-Arroyo
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: RiniPL/Dementia_Dataset
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9230769230769231
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model-Dementia-classification-Alejandro-Arroyo
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the RiniPL/Dementia_Dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1858
- Accuracy: 0.9231
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|