layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wildreceipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3129
  • Precision: 0.8780
  • Recall: 0.8870
  • F1: 0.8825
  • Accuracy: 0.9265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.32 100 1.2240 0.6077 0.3766 0.4650 0.7011
No log 0.63 200 0.8417 0.6440 0.5089 0.5685 0.7743
No log 0.95 300 0.6466 0.7243 0.6583 0.6897 0.8311
No log 1.26 400 0.5516 0.7533 0.7158 0.7341 0.8537
0.9961 1.58 500 0.4845 0.7835 0.7557 0.7693 0.8699
0.9961 1.89 600 0.4506 0.7809 0.7930 0.7869 0.8770
0.9961 2.21 700 0.4230 0.8101 0.8107 0.8104 0.8886
0.9961 2.52 800 0.3797 0.8211 0.8296 0.8253 0.8983
0.9961 2.84 900 0.3576 0.8289 0.8411 0.8349 0.9016
0.4076 3.15 1000 0.3430 0.8394 0.8371 0.8382 0.9055
0.4076 3.47 1100 0.3354 0.8531 0.8405 0.8467 0.9071
0.4076 3.79 1200 0.3331 0.8371 0.8504 0.8437 0.9076
0.4076 4.1 1300 0.3184 0.8445 0.8609 0.8526 0.9118
0.4076 4.42 1400 0.3087 0.8617 0.8580 0.8598 0.9150
0.2673 4.73 1500 0.3013 0.8613 0.8657 0.8635 0.9177
0.2673 5.05 1600 0.2971 0.8630 0.8689 0.8659 0.9181
0.2673 5.36 1700 0.3075 0.8675 0.8639 0.8657 0.9177
0.2673 5.68 1800 0.2989 0.8551 0.8764 0.8656 0.9193
0.2673 5.99 1900 0.3011 0.8572 0.8762 0.8666 0.9194
0.2026 6.31 2000 0.3107 0.8595 0.8722 0.8658 0.9181
0.2026 6.62 2100 0.3050 0.8678 0.8800 0.8739 0.9220
0.2026 6.94 2200 0.2971 0.8722 0.8789 0.8755 0.9237
0.2026 7.26 2300 0.3057 0.8666 0.8785 0.8725 0.9209
0.2026 7.57 2400 0.3172 0.8593 0.8773 0.8682 0.9184
0.1647 7.89 2500 0.3018 0.8695 0.8823 0.8759 0.9228
0.1647 8.2 2600 0.3001 0.8760 0.8795 0.8777 0.9256
0.1647 8.52 2700 0.3068 0.8758 0.8745 0.8752 0.9235
0.1647 8.83 2800 0.3007 0.8779 0.8779 0.8779 0.9248
0.1647 9.15 2900 0.3063 0.8740 0.8763 0.8751 0.9228
0.1342 9.46 3000 0.3096 0.8675 0.8834 0.8754 0.9235
0.1342 9.78 3100 0.3052 0.8736 0.8848 0.8792 0.9249
0.1342 10.09 3200 0.3120 0.8727 0.8885 0.8805 0.9252
0.1342 10.41 3300 0.3146 0.8718 0.8843 0.8780 0.9243
0.1342 10.73 3400 0.3124 0.8720 0.8880 0.8799 0.9253
0.117 11.04 3500 0.3088 0.8761 0.8817 0.8789 0.9252
0.117 11.36 3600 0.3082 0.8782 0.8834 0.8808 0.9257
0.117 11.67 3700 0.3129 0.8767 0.8847 0.8807 0.9256
0.117 11.99 3800 0.3116 0.8792 0.8847 0.8820 0.9265
0.117 12.3 3900 0.3142 0.8768 0.8874 0.8821 0.9261
0.1022 12.62 4000 0.3129 0.8780 0.8870 0.8825 0.9265

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results