File size: 5,707 Bytes
31be7d0
 
 
 
 
 
 
 
 
 
 
b4c7309
31be7d0
 
 
 
 
b4c7309
31be7d0
 
 
 
 
 
 
b4c7309
31be7d0
b4c7309
 
31be7d0
b4c7309
 
31be7d0
b4c7309
 
31be7d0
b4c7309
31be7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- wildreceipt
metrics:
- precision
- recall
- f1
- accuracy
base_model: microsoft/layoutlmv3-base
model-index:
- name: layoutlmv3-finetuned-wildreceipt
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: wildreceipt
      type: wildreceipt
      config: WildReceipt
      split: train
      args: WildReceipt
    metrics:
    - type: precision
      value: 0.877962408063198
      name: Precision
    - type: recall
      value: 0.8870235310306867
      name: Recall
    - type: f1
      value: 0.8824697104524608
      name: F1
    - type: accuracy
      value: 0.9265109136777449
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3129
- Precision: 0.8780
- Recall: 0.8870
- F1: 0.8825
- Accuracy: 0.9265

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.32  | 100  | 1.2240          | 0.6077    | 0.3766 | 0.4650 | 0.7011   |
| No log        | 0.63  | 200  | 0.8417          | 0.6440    | 0.5089 | 0.5685 | 0.7743   |
| No log        | 0.95  | 300  | 0.6466          | 0.7243    | 0.6583 | 0.6897 | 0.8311   |
| No log        | 1.26  | 400  | 0.5516          | 0.7533    | 0.7158 | 0.7341 | 0.8537   |
| 0.9961        | 1.58  | 500  | 0.4845          | 0.7835    | 0.7557 | 0.7693 | 0.8699   |
| 0.9961        | 1.89  | 600  | 0.4506          | 0.7809    | 0.7930 | 0.7869 | 0.8770   |
| 0.9961        | 2.21  | 700  | 0.4230          | 0.8101    | 0.8107 | 0.8104 | 0.8886   |
| 0.9961        | 2.52  | 800  | 0.3797          | 0.8211    | 0.8296 | 0.8253 | 0.8983   |
| 0.9961        | 2.84  | 900  | 0.3576          | 0.8289    | 0.8411 | 0.8349 | 0.9016   |
| 0.4076        | 3.15  | 1000 | 0.3430          | 0.8394    | 0.8371 | 0.8382 | 0.9055   |
| 0.4076        | 3.47  | 1100 | 0.3354          | 0.8531    | 0.8405 | 0.8467 | 0.9071   |
| 0.4076        | 3.79  | 1200 | 0.3331          | 0.8371    | 0.8504 | 0.8437 | 0.9076   |
| 0.4076        | 4.1   | 1300 | 0.3184          | 0.8445    | 0.8609 | 0.8526 | 0.9118   |
| 0.4076        | 4.42  | 1400 | 0.3087          | 0.8617    | 0.8580 | 0.8598 | 0.9150   |
| 0.2673        | 4.73  | 1500 | 0.3013          | 0.8613    | 0.8657 | 0.8635 | 0.9177   |
| 0.2673        | 5.05  | 1600 | 0.2971          | 0.8630    | 0.8689 | 0.8659 | 0.9181   |
| 0.2673        | 5.36  | 1700 | 0.3075          | 0.8675    | 0.8639 | 0.8657 | 0.9177   |
| 0.2673        | 5.68  | 1800 | 0.2989          | 0.8551    | 0.8764 | 0.8656 | 0.9193   |
| 0.2673        | 5.99  | 1900 | 0.3011          | 0.8572    | 0.8762 | 0.8666 | 0.9194   |
| 0.2026        | 6.31  | 2000 | 0.3107          | 0.8595    | 0.8722 | 0.8658 | 0.9181   |
| 0.2026        | 6.62  | 2100 | 0.3050          | 0.8678    | 0.8800 | 0.8739 | 0.9220   |
| 0.2026        | 6.94  | 2200 | 0.2971          | 0.8722    | 0.8789 | 0.8755 | 0.9237   |
| 0.2026        | 7.26  | 2300 | 0.3057          | 0.8666    | 0.8785 | 0.8725 | 0.9209   |
| 0.2026        | 7.57  | 2400 | 0.3172          | 0.8593    | 0.8773 | 0.8682 | 0.9184   |
| 0.1647        | 7.89  | 2500 | 0.3018          | 0.8695    | 0.8823 | 0.8759 | 0.9228   |
| 0.1647        | 8.2   | 2600 | 0.3001          | 0.8760    | 0.8795 | 0.8777 | 0.9256   |
| 0.1647        | 8.52  | 2700 | 0.3068          | 0.8758    | 0.8745 | 0.8752 | 0.9235   |
| 0.1647        | 8.83  | 2800 | 0.3007          | 0.8779    | 0.8779 | 0.8779 | 0.9248   |
| 0.1647        | 9.15  | 2900 | 0.3063          | 0.8740    | 0.8763 | 0.8751 | 0.9228   |
| 0.1342        | 9.46  | 3000 | 0.3096          | 0.8675    | 0.8834 | 0.8754 | 0.9235   |
| 0.1342        | 9.78  | 3100 | 0.3052          | 0.8736    | 0.8848 | 0.8792 | 0.9249   |
| 0.1342        | 10.09 | 3200 | 0.3120          | 0.8727    | 0.8885 | 0.8805 | 0.9252   |
| 0.1342        | 10.41 | 3300 | 0.3146          | 0.8718    | 0.8843 | 0.8780 | 0.9243   |
| 0.1342        | 10.73 | 3400 | 0.3124          | 0.8720    | 0.8880 | 0.8799 | 0.9253   |
| 0.117         | 11.04 | 3500 | 0.3088          | 0.8761    | 0.8817 | 0.8789 | 0.9252   |
| 0.117         | 11.36 | 3600 | 0.3082          | 0.8782    | 0.8834 | 0.8808 | 0.9257   |
| 0.117         | 11.67 | 3700 | 0.3129          | 0.8767    | 0.8847 | 0.8807 | 0.9256   |
| 0.117         | 11.99 | 3800 | 0.3116          | 0.8792    | 0.8847 | 0.8820 | 0.9265   |
| 0.117         | 12.3  | 3900 | 0.3142          | 0.8768    | 0.8874 | 0.8821 | 0.9261   |
| 0.1022        | 12.62 | 4000 | 0.3129          | 0.8780    | 0.8870 | 0.8825 | 0.9265   |


### Framework versions

- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1