|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
import shutil |
|
import logging |
|
import torch |
|
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
|
|
from .projector import load_mm_projector |
|
from .videollama2_llama import Videollama2LlamaForCausalLM, Videollama2LlamaConfig |
|
from .videollama2_mistral import Videollama2MistralForCausalLM, Videollama2MistralConfig |
|
from .videollama2_mixtral import Videollama2MixtralForCausalLM, Videollama2MixtralConfig |
|
from .videollama2_qwen2 import Videollama2Qwen2ForCausalLM, Videollama2Qwen2Config |
|
from .videollama2_gemma2 import Videollama2Gemma2ForCausalLM, Videollama2Gemma2Config |
|
from .videollama2_phi3 import Videollama2Phi3ForCausalLM, Videollama2Phi3Config |
|
|
|
|
|
VLLMs = { |
|
"videollama2": Videollama2MistralForCausalLM, |
|
"videollama2_llama": Videollama2LlamaForCausalLM, |
|
"videollama2_mistral": Videollama2MistralForCausalLM, |
|
"videollama2_mixtral": Videollama2MixtralForCausalLM, |
|
"videollama2_qwen2": Videollama2Qwen2ForCausalLM, |
|
"videollama2_gemma2": Videollama2Gemma2ForCausalLM, |
|
"videollama2_phi3": Videollama2Phi3ForCausalLM, |
|
} |
|
|
|
VLLMConfigs = { |
|
"videollama2": Videollama2MistralConfig, |
|
"videollama2_llama": Videollama2LlamaConfig, |
|
"videollama2_mistral": Videollama2MistralConfig, |
|
"videollama2_mixtral": Videollama2MixtralConfig, |
|
"videollama2_qwen2": Videollama2Qwen2Config, |
|
"videollama2_gemma2": Videollama2Gemma2Config, |
|
"videollama2_phi3": Videollama2Phi3Config, |
|
} |
|
|
|
|
|
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): |
|
logging.info(f"Loading model from path: {model_path}") |
|
logging.info(f"Model base: {model_base}, Model name: {model_name}") |
|
logging.info(f"Device: {device}, Device map: {device_map}") |
|
|
|
if 'token' in kwargs: |
|
token = kwargs['token'] |
|
else: |
|
token = None |
|
|
|
kwargs = {"device_map": device_map, **kwargs} |
|
|
|
if device != "cuda": |
|
kwargs['device_map'] = {"": device} |
|
|
|
if load_8bit: |
|
kwargs['load_in_8bit'] = True |
|
elif load_4bit: |
|
|
|
|
|
kwargs['quantization_config'] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
) |
|
else: |
|
kwargs['torch_dtype'] = torch.float16 |
|
|
|
if use_flash_attn: |
|
kwargs['attn_implementation'] = 'flash_attention_2' |
|
|
|
try: |
|
config = AutoConfig.from_pretrained(model_path) |
|
logging.info(f"Model configuration loaded successfully.") |
|
except Exception as e: |
|
logging.error(f"Error loading model configuration: {e}") |
|
raise e |
|
|
|
|
|
model_type = config.model_type |
|
|
|
|
|
try: |
|
is_pretraining = config.tune_mm_mlp_adapter |
|
except: |
|
is_pretraining = False |
|
|
|
|
|
if 'lora' in model_name.lower() or 'qlora' in model_name.lower(): |
|
logging.info(f"inside lora if") |
|
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token) |
|
|
|
|
|
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path |
|
|
|
|
|
if hasattr(lora_cfg_pretrained, 'quantization_config'): |
|
del lora_cfg_pretrained.quantization_config |
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token) |
|
print('Loading VideoLLaMA from base model...') |
|
|
|
if 'vicuna' in model_base.lower(): |
|
model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif 'mistral' in model_base.lower(): |
|
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
else: |
|
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
|
|
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features |
|
if model.lm_head.weight.shape[0] != token_num: |
|
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) |
|
|
|
print('Loading additional VideoLLaMA weights...') |
|
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): |
|
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') |
|
else: |
|
|
|
from huggingface_hub import hf_hub_download |
|
def load_from_hf(repo_id, filename, subfolder=None): |
|
cache_file = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder) |
|
return torch.load(cache_file, map_location='cpu') |
|
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') |
|
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} |
|
if any(k.startswith('model.model.') for k in non_lora_trainables): |
|
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} |
|
model.load_state_dict(non_lora_trainables, strict=False) |
|
|
|
from peft import PeftModel |
|
print('Loading LoRA weights...') |
|
model = PeftModel.from_pretrained(model, model_path) |
|
print('Merging LoRA weights...') |
|
model = model.merge_and_unload() |
|
print('Model is loaded...') |
|
elif model_base is not None or '-base' in model_name.lower() or is_pretraining: |
|
|
|
logging.info(f"inside else if base model") |
|
print('Loading VideoLLaMA 2 from base model...') |
|
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token) |
|
|
|
|
|
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token) |
|
|
|
if model_type in ['videollama2', 'videollama2_mistral']: |
|
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_mixtral']: |
|
model = Videollama2MixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_qwen2']: |
|
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_gemma2']: |
|
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_phi3']: |
|
model = Videollama2Phi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
else: |
|
model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mm_projector_weights = load_mm_projector(model_path, token=token) |
|
model.load_state_dict(mm_projector_weights, strict=False) |
|
elif 'videollama2' in model_type: |
|
|
|
logging.info(f"inside AutoTokenizer else if") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token) |
|
|
|
if model_type in ['videollama2', 'videollama2_mistral']: |
|
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_mixtral']: |
|
logging.info(f"Loading videollama2_mixtral") |
|
logging.info(f"Config: {config}") |
|
model = Videollama2MixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_qwen2']: |
|
model = Videollama2Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_gemma2']: |
|
model = Videollama2Gemma2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) |
|
elif model_type in ['videollama2_phi3']: |
|
model = Videollama2Phi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) |
|
else: |
|
model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) |
|
else: |
|
logging.info(f"inside else") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs) |
|
|
|
processor = None |
|
|
|
if "videollama" in model_type: |
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
vision_tower.to(device=device, dtype=torch.float16) |
|
|
|
processor = vision_tower.image_processor |
|
|
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
logging.info(f"Model: {model}") |
|
logging.info(f"context_len: {context_len}") |
|
return tokenizer, model, processor, context_len |
|
|