whisper-small-ru / README.md
AlinaKozyreva's picture
End of training
fcd8937 verified
metadata
language:
  - ru
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Small Ru - Model_ru_3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: ru
          split: test
          args: ru
        metrics:
          - name: Wer
            type: wer
            value: 13.30140186915888

Whisper Small Ru - Model_ru_3

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2080
  • Wer Ortho: 17.4462
  • Wer: 13.3014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2085 0.22 500 0.2366 19.9234 14.9498
0.1875 0.44 1000 0.2176 19.3079 14.5643
0.1688 0.66 1500 0.2095 18.3736 13.9287
0.1678 0.88 2000 0.2038 17.7325 13.4381
0.0853 1.1 2500 0.2036 17.0309 12.7488
0.0822 1.32 3000 0.2046 17.6894 13.2780
0.0775 1.54 3500 0.2051 16.9948 12.7126
0.0727 1.76 4000 0.2080 17.4462 13.3014

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2