whisper-tiny-en-US / README.md
AlirezaTirehkar's picture
End of training
c4cf11e verified
|
raw
history blame
2.53 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-en-US
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train[450:]
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.34887839433293977

whisper-tiny-en-US

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6638
  • Wer Ortho: 34.5466
  • Wer: 0.3489

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.7657 1.7857 50 0.5870 39.4818 0.3932
0.2562 3.5714 100 0.4866 34.8550 0.3483
0.0666 5.3571 150 0.5190 34.5466 0.3489
0.0228 7.1429 200 0.5649 32.4491 0.3288
0.0065 8.9286 250 0.5845 32.0173 0.3229
0.0018 10.7143 300 0.6142 33.6212 0.3400
0.0012 12.5 350 0.6320 33.3128 0.3371
0.0008 14.2857 400 0.6443 34.1764 0.3465
0.0007 16.0714 450 0.6548 34.2381 0.3447
0.0007 17.8571 500 0.6638 34.5466 0.3489

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1