Alwin114/my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1251
- Validation Loss: 0.2613
- Train Precision: 0.5636
- Train Recall: 0.4079
- Train F1: 0.4733
- Train Accuracy: 0.9449
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.3473 | 0.3059 | 0.3825 | 0.2667 | 0.3143 | 0.9352 | 0 |
0.1626 | 0.2656 | 0.5075 | 0.3648 | 0.4245 | 0.9418 | 1 |
0.1251 | 0.2613 | 0.5636 | 0.4079 | 0.4733 | 0.9449 | 2 |
Framework versions
- Transformers 4.30.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.