shawgpt-ft / README.md
AndersNielsen's picture
AndersNielsen/shawgpt-ft-improved
7f5cd8b verified
metadata
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: shawgpt-ft
    results: []

shawgpt-ft

This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4738

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.6196 0.9231 3 4.1001
4.3204 1.8462 6 3.8081
3.9701 2.7692 9 3.5253
2.721 4.0 13 3.1570
3.329 4.9231 16 2.9058
3.0229 5.8462 19 2.6830
2.7687 6.7692 22 2.4873
1.9015 8.0 26 2.2572
2.3231 8.9231 29 2.0842
2.0802 9.8462 32 1.9251
1.9463 10.7692 35 1.8215
1.3485 12.0 39 1.7140
1.7274 12.9231 42 1.6481
1.6266 13.8462 45 1.5914
1.579 14.7692 48 1.5464
1.1539 16.0 52 1.5070
1.488 16.9231 55 1.4877
1.4566 17.8462 58 1.4766
1.0211 18.4615 60 1.4738

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.19.1