bert_clf_results
This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9611
- Accuracy: 0.7011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0767 | 1.0 | 5401 | 0.8447 | 0.7087 |
0.6523 | 2.0 | 10803 | 0.8287 | 0.7156 |
0.7209 | 3.0 | 16204 | 0.8852 | 0.7121 |
0.4274 | 4.0 | 21604 | 0.9611 | 0.7011 |
Code Implementation
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Andyrasika/bert_clf_results")
inputs = tokenizer(prompt, return_tensors="pt")
model = AutoModelForSequenceClassification.from_pretrained("Andyrasika/bert_clf_results")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
model.config.id2label[predicted_class_id]
Output
'LABEL_4'
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.16.0
- Tokenizers 0.15.0
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Andyrasika/bert_clf_results
Base model
distilbert/distilbert-base-cased