Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.4.0
# adding back the LoRA adopters to the base Llama-2 model

lora_config = LoraConfig.from_pretrained('Andyrasika/qlora-dialogue-summary')
model = get_peft_model(model, lora_config)

inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_new_tokens=100 ,repetition_penalty=1.2)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train Andyrasika/qlora-dialogue-summary