nb-bert-base-edu-scorer-lr3e4-bs32-swe
This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7996
- Mse: 0.7996
- Mae: 0.6982
- Rmse: 0.8942
- R2: 0.5844
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Rmse | R2 |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 6.0700 | 6.0700 | 2.0111 | 2.4637 | -2.0534 |
| 1.1272 | 0.3397 | 1000 | 1.0319 | 1.0319 | 0.7925 | 1.0158 | 0.4809 |
| 1.0837 | 0.6793 | 2000 | 1.0182 | 1.0182 | 0.7850 | 1.0091 | 0.4878 |
| 1.0446 | 1.0190 | 3000 | 0.9967 | 0.9967 | 0.7683 | 0.9983 | 0.4986 |
| 1.0863 | 1.3587 | 4000 | 0.9580 | 0.9580 | 0.7534 | 0.9788 | 0.5181 |
| 1.0601 | 1.6984 | 5000 | 1.0061 | 1.0061 | 0.7796 | 1.0030 | 0.4939 |
| 0.9957 | 2.0380 | 6000 | 1.3005 | 1.3005 | 0.8945 | 1.1404 | 0.3458 |
| 1.0104 | 2.3777 | 7000 | 0.9569 | 0.9569 | 0.7483 | 0.9782 | 0.5187 |
| 1.04 | 2.7174 | 8000 | 0.9457 | 0.9457 | 0.7648 | 0.9724 | 0.5243 |
| 1.0445 | 3.0571 | 9000 | 0.9641 | 0.9641 | 0.7445 | 0.9819 | 0.5150 |
| 0.9931 | 3.3967 | 10000 | 0.9549 | 0.9549 | 0.7430 | 0.9772 | 0.5197 |
| 1.0134 | 3.7364 | 11000 | 0.9791 | 0.9791 | 0.7549 | 0.9895 | 0.5075 |
| 1.0366 | 4.0761 | 12000 | 1.0248 | 1.0248 | 0.7673 | 1.0123 | 0.4845 |
| 1.0106 | 4.4158 | 13000 | 0.9321 | 0.9321 | 0.7378 | 0.9654 | 0.5311 |
| 0.9409 | 4.7554 | 14000 | 0.9553 | 0.9553 | 0.7420 | 0.9774 | 0.5194 |
| 0.925 | 5.0951 | 15000 | 1.1885 | 1.1885 | 0.8538 | 1.0902 | 0.4021 |
| 0.961 | 5.4348 | 16000 | 0.9201 | 0.9201 | 0.7341 | 0.9592 | 0.5372 |
| 1.0096 | 5.7745 | 17000 | 0.9192 | 0.9192 | 0.7448 | 0.9587 | 0.5376 |
| 0.9696 | 6.1141 | 18000 | 0.9543 | 0.9543 | 0.7445 | 0.9769 | 0.5199 |
| 0.9737 | 6.4538 | 19000 | 0.9287 | 0.9287 | 0.7281 | 0.9637 | 0.5328 |
| 0.9725 | 6.7935 | 20000 | 0.9589 | 0.9589 | 0.7557 | 0.9792 | 0.5176 |
| 0.9683 | 7.1332 | 21000 | 0.9079 | 0.9079 | 0.7354 | 0.9528 | 0.5433 |
| 0.9606 | 7.4728 | 22000 | 0.9885 | 0.9885 | 0.7481 | 0.9943 | 0.5027 |
| 0.9846 | 7.8125 | 23000 | 1.0081 | 1.0081 | 0.7895 | 1.0041 | 0.4929 |
| 0.9671 | 8.1522 | 24000 | 0.9174 | 0.9174 | 0.7251 | 0.9578 | 0.5385 |
| 0.9679 | 8.4918 | 25000 | 0.9212 | 0.9212 | 0.7447 | 0.9598 | 0.5366 |
| 0.9503 | 8.8315 | 26000 | 0.9418 | 0.9418 | 0.7343 | 0.9705 | 0.5262 |
| 0.9858 | 9.1712 | 27000 | 0.9186 | 0.9186 | 0.7325 | 0.9584 | 0.5379 |
| 0.969 | 9.5109 | 28000 | 0.9219 | 0.9219 | 0.7352 | 0.9602 | 0.5362 |
| 1.0022 | 9.8505 | 29000 | 0.9458 | 0.9458 | 0.7400 | 0.9725 | 0.5242 |
| 0.942 | 10.1902 | 30000 | 0.9746 | 0.9746 | 0.7416 | 0.9872 | 0.5097 |
| 0.9633 | 10.5299 | 31000 | 0.9173 | 0.9173 | 0.7218 | 0.9577 | 0.5386 |
| 0.9463 | 10.8696 | 32000 | 0.9528 | 0.9528 | 0.7443 | 0.9761 | 0.5207 |
| 0.9803 | 11.2092 | 33000 | 0.9042 | 0.9042 | 0.7226 | 0.9509 | 0.5452 |
| 0.9318 | 11.5489 | 34000 | 0.9030 | 0.9030 | 0.7270 | 0.9502 | 0.5458 |
| 0.9176 | 11.8886 | 35000 | 0.9378 | 0.9378 | 0.7314 | 0.9684 | 0.5283 |
| 0.9063 | 12.2283 | 36000 | 0.8946 | 0.8946 | 0.7191 | 0.9458 | 0.5500 |
| 0.9754 | 12.5679 | 37000 | 0.8938 | 0.8938 | 0.7207 | 0.9454 | 0.5504 |
| 0.9291 | 12.9076 | 38000 | 0.9565 | 0.9565 | 0.7503 | 0.9780 | 0.5188 |
| 0.9142 | 13.2473 | 39000 | 0.9238 | 0.9238 | 0.7278 | 0.9611 | 0.5353 |
| 0.9579 | 13.5870 | 40000 | 0.9267 | 0.9267 | 0.7335 | 0.9627 | 0.5338 |
| 0.9556 | 13.9266 | 41000 | 0.9083 | 0.9083 | 0.7197 | 0.9531 | 0.5431 |
| 0.9465 | 14.2663 | 42000 | 0.9228 | 0.9228 | 0.7287 | 0.9606 | 0.5358 |
| 0.9455 | 14.6060 | 43000 | 0.9122 | 0.9122 | 0.7201 | 0.9551 | 0.5411 |
| 0.9294 | 14.9457 | 44000 | 0.9241 | 0.9241 | 0.7307 | 0.9613 | 0.5351 |
| 0.9038 | 15.2853 | 45000 | 0.8985 | 0.8985 | 0.7229 | 0.9479 | 0.5480 |
| 0.9154 | 15.625 | 46000 | 0.9374 | 0.9374 | 0.7451 | 0.9682 | 0.5285 |
| 0.9482 | 15.9647 | 47000 | 0.9487 | 0.9487 | 0.7413 | 0.9740 | 0.5228 |
| 0.9568 | 16.3043 | 48000 | 0.9006 | 0.9006 | 0.7224 | 0.9490 | 0.5470 |
| 0.9902 | 16.6440 | 49000 | 0.9042 | 0.9042 | 0.7200 | 0.9509 | 0.5451 |
| 0.9364 | 16.9837 | 50000 | 0.9053 | 0.9053 | 0.7263 | 0.9515 | 0.5446 |
| 0.9432 | 17.3234 | 51000 | 0.9139 | 0.9139 | 0.7331 | 0.9560 | 0.5403 |
| 0.9288 | 17.6630 | 52000 | 0.9165 | 0.9165 | 0.7285 | 0.9573 | 0.5390 |
| 0.9385 | 18.0027 | 53000 | 0.9081 | 0.9081 | 0.7243 | 0.9529 | 0.5432 |
| 0.9157 | 18.3424 | 54000 | 0.9449 | 0.9449 | 0.7435 | 0.9720 | 0.5247 |
| 0.9666 | 18.6821 | 55000 | 0.8962 | 0.8962 | 0.7174 | 0.9467 | 0.5492 |
| 0.931 | 19.0217 | 56000 | 0.8971 | 0.8971 | 0.7222 | 0.9471 | 0.5487 |
| 0.96 | 19.3614 | 57000 | 0.8975 | 0.8975 | 0.7230 | 0.9473 | 0.5485 |
| 0.9257 | 19.7011 | 58000 | 0.9041 | 0.9041 | 0.7252 | 0.9508 | 0.5452 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.5.1+cu121
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 2
Model tree for AngelinaZanardi/nb-bert-base-edu-scorer-lr3e4-bs32-swe
Base model
NbAiLab/nb-bert-base