nb-bert-base-edu-scorer-lr3e4-bs32-swe

This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7996
  • Mse: 0.7996
  • Mae: 0.6982
  • Rmse: 0.8942
  • R2: 0.5844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse R2
No log 0 0 6.0700 6.0700 2.0111 2.4637 -2.0534
1.1272 0.3397 1000 1.0319 1.0319 0.7925 1.0158 0.4809
1.0837 0.6793 2000 1.0182 1.0182 0.7850 1.0091 0.4878
1.0446 1.0190 3000 0.9967 0.9967 0.7683 0.9983 0.4986
1.0863 1.3587 4000 0.9580 0.9580 0.7534 0.9788 0.5181
1.0601 1.6984 5000 1.0061 1.0061 0.7796 1.0030 0.4939
0.9957 2.0380 6000 1.3005 1.3005 0.8945 1.1404 0.3458
1.0104 2.3777 7000 0.9569 0.9569 0.7483 0.9782 0.5187
1.04 2.7174 8000 0.9457 0.9457 0.7648 0.9724 0.5243
1.0445 3.0571 9000 0.9641 0.9641 0.7445 0.9819 0.5150
0.9931 3.3967 10000 0.9549 0.9549 0.7430 0.9772 0.5197
1.0134 3.7364 11000 0.9791 0.9791 0.7549 0.9895 0.5075
1.0366 4.0761 12000 1.0248 1.0248 0.7673 1.0123 0.4845
1.0106 4.4158 13000 0.9321 0.9321 0.7378 0.9654 0.5311
0.9409 4.7554 14000 0.9553 0.9553 0.7420 0.9774 0.5194
0.925 5.0951 15000 1.1885 1.1885 0.8538 1.0902 0.4021
0.961 5.4348 16000 0.9201 0.9201 0.7341 0.9592 0.5372
1.0096 5.7745 17000 0.9192 0.9192 0.7448 0.9587 0.5376
0.9696 6.1141 18000 0.9543 0.9543 0.7445 0.9769 0.5199
0.9737 6.4538 19000 0.9287 0.9287 0.7281 0.9637 0.5328
0.9725 6.7935 20000 0.9589 0.9589 0.7557 0.9792 0.5176
0.9683 7.1332 21000 0.9079 0.9079 0.7354 0.9528 0.5433
0.9606 7.4728 22000 0.9885 0.9885 0.7481 0.9943 0.5027
0.9846 7.8125 23000 1.0081 1.0081 0.7895 1.0041 0.4929
0.9671 8.1522 24000 0.9174 0.9174 0.7251 0.9578 0.5385
0.9679 8.4918 25000 0.9212 0.9212 0.7447 0.9598 0.5366
0.9503 8.8315 26000 0.9418 0.9418 0.7343 0.9705 0.5262
0.9858 9.1712 27000 0.9186 0.9186 0.7325 0.9584 0.5379
0.969 9.5109 28000 0.9219 0.9219 0.7352 0.9602 0.5362
1.0022 9.8505 29000 0.9458 0.9458 0.7400 0.9725 0.5242
0.942 10.1902 30000 0.9746 0.9746 0.7416 0.9872 0.5097
0.9633 10.5299 31000 0.9173 0.9173 0.7218 0.9577 0.5386
0.9463 10.8696 32000 0.9528 0.9528 0.7443 0.9761 0.5207
0.9803 11.2092 33000 0.9042 0.9042 0.7226 0.9509 0.5452
0.9318 11.5489 34000 0.9030 0.9030 0.7270 0.9502 0.5458
0.9176 11.8886 35000 0.9378 0.9378 0.7314 0.9684 0.5283
0.9063 12.2283 36000 0.8946 0.8946 0.7191 0.9458 0.5500
0.9754 12.5679 37000 0.8938 0.8938 0.7207 0.9454 0.5504
0.9291 12.9076 38000 0.9565 0.9565 0.7503 0.9780 0.5188
0.9142 13.2473 39000 0.9238 0.9238 0.7278 0.9611 0.5353
0.9579 13.5870 40000 0.9267 0.9267 0.7335 0.9627 0.5338
0.9556 13.9266 41000 0.9083 0.9083 0.7197 0.9531 0.5431
0.9465 14.2663 42000 0.9228 0.9228 0.7287 0.9606 0.5358
0.9455 14.6060 43000 0.9122 0.9122 0.7201 0.9551 0.5411
0.9294 14.9457 44000 0.9241 0.9241 0.7307 0.9613 0.5351
0.9038 15.2853 45000 0.8985 0.8985 0.7229 0.9479 0.5480
0.9154 15.625 46000 0.9374 0.9374 0.7451 0.9682 0.5285
0.9482 15.9647 47000 0.9487 0.9487 0.7413 0.9740 0.5228
0.9568 16.3043 48000 0.9006 0.9006 0.7224 0.9490 0.5470
0.9902 16.6440 49000 0.9042 0.9042 0.7200 0.9509 0.5451
0.9364 16.9837 50000 0.9053 0.9053 0.7263 0.9515 0.5446
0.9432 17.3234 51000 0.9139 0.9139 0.7331 0.9560 0.5403
0.9288 17.6630 52000 0.9165 0.9165 0.7285 0.9573 0.5390
0.9385 18.0027 53000 0.9081 0.9081 0.7243 0.9529 0.5432
0.9157 18.3424 54000 0.9449 0.9449 0.7435 0.9720 0.5247
0.9666 18.6821 55000 0.8962 0.8962 0.7174 0.9467 0.5492
0.931 19.0217 56000 0.8971 0.8971 0.7222 0.9471 0.5487
0.96 19.3614 57000 0.8975 0.8975 0.7230 0.9473 0.5485
0.9257 19.7011 58000 0.9041 0.9041 0.7252 0.9508 0.5452

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.5.1+cu121
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
2
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AngelinaZanardi/nb-bert-base-edu-scorer-lr3e4-bs32-swe

Finetuned
(26)
this model