Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.2754

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ankit15nov/setfit-ethos-multilabel-example")
# Run inference
preds = model("NiSource Inc. NYSE NI completes the issuance of a 19.9 indirect equity interest in NIPSCO to Blackstone Infrastructure Partners affiliate for 2.16 billion with an additional equity commitment of 250 million. The investment aims to strengthen NIPSCO's financial foundation support sustainable long term growth and fund ongoing capital requirements for energy transition and reindustrialization of the Midwest. ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 590.5 2491

Training Hyperparameters

  • batch_size: (4, 4)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.4292 -
0.0893 50 0.0057 -
0.1786 100 0.2115 -
0.2679 150 0.0003 -
0.3571 200 0.0022 -
0.4464 250 0.0003 -
0.5357 300 0.0083 -
0.625 350 0.0043 -
0.7143 400 0.0038 -
0.8036 450 0.0014 -
0.8929 500 0.0031 -
0.9821 550 0.0014 -

Framework Versions

  • Python: 3.10.14
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.40.1
  • PyTorch: 2.1.0
  • Datasets: 2.3.2
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for Ankit15nov/setfit-ethos-multilabel-example

Finetuned
(246)
this model

Evaluation results