|
import datetime |
|
from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set |
|
import cloudpickle |
|
import enum |
|
import time |
|
|
|
from mlagents_envs.environment import UnityEnvironment |
|
from mlagents_envs.exception import ( |
|
UnityCommunicationException, |
|
UnityTimeOutException, |
|
UnityEnvironmentException, |
|
UnityCommunicatorStoppedException, |
|
) |
|
from multiprocessing import Process, Pipe, Queue |
|
from multiprocessing.connection import Connection |
|
from queue import Empty as EmptyQueueException |
|
from mlagents_envs.base_env import BaseEnv, BehaviorName, BehaviorSpec |
|
from mlagents_envs import logging_util |
|
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult |
|
from mlagents.trainers.settings import TrainerSettings |
|
from mlagents_envs.timers import ( |
|
TimerNode, |
|
timed, |
|
hierarchical_timer, |
|
reset_timers, |
|
get_timer_root, |
|
) |
|
from mlagents.trainers.settings import ParameterRandomizationSettings, RunOptions |
|
from mlagents.trainers.action_info import ActionInfo |
|
from mlagents_envs.side_channel.environment_parameters_channel import ( |
|
EnvironmentParametersChannel, |
|
) |
|
from mlagents_envs.side_channel.engine_configuration_channel import ( |
|
EngineConfigurationChannel, |
|
EngineConfig, |
|
) |
|
from mlagents_envs.side_channel.stats_side_channel import ( |
|
EnvironmentStats, |
|
StatsSideChannel, |
|
) |
|
from mlagents.trainers.training_analytics_side_channel import ( |
|
TrainingAnalyticsSideChannel, |
|
) |
|
from mlagents_envs.side_channel.side_channel import SideChannel |
|
|
|
|
|
logger = logging_util.get_logger(__name__) |
|
WORKER_SHUTDOWN_TIMEOUT_S = 10 |
|
|
|
|
|
class EnvironmentCommand(enum.Enum): |
|
STEP = 1 |
|
BEHAVIOR_SPECS = 2 |
|
ENVIRONMENT_PARAMETERS = 3 |
|
RESET = 4 |
|
CLOSE = 5 |
|
ENV_EXITED = 6 |
|
CLOSED = 7 |
|
TRAINING_STARTED = 8 |
|
|
|
|
|
class EnvironmentRequest(NamedTuple): |
|
cmd: EnvironmentCommand |
|
payload: Any = None |
|
|
|
|
|
class EnvironmentResponse(NamedTuple): |
|
cmd: EnvironmentCommand |
|
worker_id: int |
|
payload: Any |
|
|
|
|
|
class StepResponse(NamedTuple): |
|
all_step_result: AllStepResult |
|
timer_root: Optional[TimerNode] |
|
environment_stats: EnvironmentStats |
|
|
|
|
|
class UnityEnvWorker: |
|
def __init__(self, process: Process, worker_id: int, conn: Connection): |
|
self.process = process |
|
self.worker_id = worker_id |
|
self.conn = conn |
|
self.previous_step: EnvironmentStep = EnvironmentStep.empty(worker_id) |
|
self.previous_all_action_info: Dict[str, ActionInfo] = {} |
|
self.waiting = False |
|
self.closed = False |
|
|
|
def send(self, cmd: EnvironmentCommand, payload: Any = None) -> None: |
|
try: |
|
req = EnvironmentRequest(cmd, payload) |
|
self.conn.send(req) |
|
except (BrokenPipeError, EOFError): |
|
raise UnityCommunicationException("UnityEnvironment worker: send failed.") |
|
|
|
def recv(self) -> EnvironmentResponse: |
|
try: |
|
response: EnvironmentResponse = self.conn.recv() |
|
if response.cmd == EnvironmentCommand.ENV_EXITED: |
|
env_exception: Exception = response.payload |
|
raise env_exception |
|
return response |
|
except (BrokenPipeError, EOFError): |
|
raise UnityCommunicationException("UnityEnvironment worker: recv failed.") |
|
|
|
def request_close(self): |
|
try: |
|
self.conn.send(EnvironmentRequest(EnvironmentCommand.CLOSE)) |
|
except (BrokenPipeError, EOFError): |
|
logger.debug( |
|
f"UnityEnvWorker {self.worker_id} got exception trying to close." |
|
) |
|
pass |
|
|
|
|
|
def worker( |
|
parent_conn: Connection, |
|
step_queue: Queue, |
|
pickled_env_factory: str, |
|
worker_id: int, |
|
run_options: RunOptions, |
|
log_level: int = logging_util.INFO, |
|
) -> None: |
|
env_factory: Callable[ |
|
[int, List[SideChannel]], UnityEnvironment |
|
] = cloudpickle.loads(pickled_env_factory) |
|
env_parameters = EnvironmentParametersChannel() |
|
|
|
engine_config = EngineConfig( |
|
width=run_options.engine_settings.width, |
|
height=run_options.engine_settings.height, |
|
quality_level=run_options.engine_settings.quality_level, |
|
time_scale=run_options.engine_settings.time_scale, |
|
target_frame_rate=run_options.engine_settings.target_frame_rate, |
|
capture_frame_rate=run_options.engine_settings.capture_frame_rate, |
|
) |
|
engine_configuration_channel = EngineConfigurationChannel() |
|
engine_configuration_channel.set_configuration(engine_config) |
|
|
|
stats_channel = StatsSideChannel() |
|
training_analytics_channel: Optional[TrainingAnalyticsSideChannel] = None |
|
if worker_id == 0: |
|
training_analytics_channel = TrainingAnalyticsSideChannel() |
|
env: UnityEnvironment = None |
|
|
|
|
|
logging_util.set_log_level(log_level) |
|
|
|
def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None: |
|
parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload)) |
|
|
|
def _generate_all_results() -> AllStepResult: |
|
all_step_result: AllStepResult = {} |
|
for brain_name in env.behavior_specs: |
|
all_step_result[brain_name] = env.get_steps(brain_name) |
|
return all_step_result |
|
|
|
try: |
|
side_channels = [env_parameters, engine_configuration_channel, stats_channel] |
|
if training_analytics_channel is not None: |
|
side_channels.append(training_analytics_channel) |
|
|
|
env = env_factory(worker_id, side_channels) |
|
if ( |
|
not env.academy_capabilities |
|
or not env.academy_capabilities.trainingAnalytics |
|
): |
|
|
|
|
|
training_analytics_channel = None |
|
if training_analytics_channel: |
|
training_analytics_channel.environment_initialized(run_options) |
|
|
|
while True: |
|
req: EnvironmentRequest = parent_conn.recv() |
|
if req.cmd == EnvironmentCommand.STEP: |
|
all_action_info = req.payload |
|
for brain_name, action_info in all_action_info.items(): |
|
if len(action_info.agent_ids) > 0: |
|
env.set_actions(brain_name, action_info.env_action) |
|
env.step() |
|
all_step_result = _generate_all_results() |
|
|
|
|
|
|
|
|
|
|
|
env_stats = stats_channel.get_and_reset_stats() |
|
step_response = StepResponse( |
|
all_step_result, get_timer_root(), env_stats |
|
) |
|
step_queue.put( |
|
EnvironmentResponse( |
|
EnvironmentCommand.STEP, worker_id, step_response |
|
) |
|
) |
|
reset_timers() |
|
elif req.cmd == EnvironmentCommand.BEHAVIOR_SPECS: |
|
_send_response(EnvironmentCommand.BEHAVIOR_SPECS, env.behavior_specs) |
|
elif req.cmd == EnvironmentCommand.ENVIRONMENT_PARAMETERS: |
|
for k, v in req.payload.items(): |
|
if isinstance(v, ParameterRandomizationSettings): |
|
v.apply(k, env_parameters) |
|
elif req.cmd == EnvironmentCommand.TRAINING_STARTED: |
|
behavior_name, trainer_config = req.payload |
|
if training_analytics_channel: |
|
training_analytics_channel.training_started( |
|
behavior_name, trainer_config |
|
) |
|
elif req.cmd == EnvironmentCommand.RESET: |
|
env.reset() |
|
all_step_result = _generate_all_results() |
|
_send_response(EnvironmentCommand.RESET, all_step_result) |
|
elif req.cmd == EnvironmentCommand.CLOSE: |
|
break |
|
except ( |
|
KeyboardInterrupt, |
|
UnityCommunicationException, |
|
UnityTimeOutException, |
|
UnityEnvironmentException, |
|
UnityCommunicatorStoppedException, |
|
) as ex: |
|
logger.debug(f"UnityEnvironment worker {worker_id}: environment stopping.") |
|
step_queue.put( |
|
EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex) |
|
) |
|
_send_response(EnvironmentCommand.ENV_EXITED, ex) |
|
except Exception as ex: |
|
logger.exception( |
|
f"UnityEnvironment worker {worker_id}: environment raised an unexpected exception." |
|
) |
|
step_queue.put( |
|
EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex) |
|
) |
|
_send_response(EnvironmentCommand.ENV_EXITED, ex) |
|
finally: |
|
logger.debug(f"UnityEnvironment worker {worker_id} closing.") |
|
if env is not None: |
|
env.close() |
|
logger.debug(f"UnityEnvironment worker {worker_id} done.") |
|
parent_conn.close() |
|
step_queue.put(EnvironmentResponse(EnvironmentCommand.CLOSED, worker_id, None)) |
|
step_queue.close() |
|
|
|
|
|
class SubprocessEnvManager(EnvManager): |
|
def __init__( |
|
self, |
|
env_factory: Callable[[int, List[SideChannel]], BaseEnv], |
|
run_options: RunOptions, |
|
n_env: int = 1, |
|
): |
|
super().__init__() |
|
self.env_workers: List[UnityEnvWorker] = [] |
|
self.step_queue: Queue = Queue() |
|
self.workers_alive = 0 |
|
self.env_factory = env_factory |
|
self.run_options = run_options |
|
self.env_parameters: Optional[Dict] = None |
|
|
|
self.recent_restart_timestamps: List[List[datetime.datetime]] = [ |
|
[] for _ in range(n_env) |
|
] |
|
self.restart_counts: List[int] = [0] * n_env |
|
for worker_idx in range(n_env): |
|
self.env_workers.append( |
|
self.create_worker( |
|
worker_idx, self.step_queue, env_factory, run_options |
|
) |
|
) |
|
self.workers_alive += 1 |
|
|
|
@staticmethod |
|
def create_worker( |
|
worker_id: int, |
|
step_queue: Queue, |
|
env_factory: Callable[[int, List[SideChannel]], BaseEnv], |
|
run_options: RunOptions, |
|
) -> UnityEnvWorker: |
|
parent_conn, child_conn = Pipe() |
|
|
|
|
|
|
|
pickled_env_factory = cloudpickle.dumps(env_factory) |
|
child_process = Process( |
|
target=worker, |
|
args=( |
|
child_conn, |
|
step_queue, |
|
pickled_env_factory, |
|
worker_id, |
|
run_options, |
|
logger.level, |
|
), |
|
) |
|
child_process.start() |
|
return UnityEnvWorker(child_process, worker_id, parent_conn) |
|
|
|
def _queue_steps(self) -> None: |
|
for env_worker in self.env_workers: |
|
if not env_worker.waiting: |
|
env_action_info = self._take_step(env_worker.previous_step) |
|
env_worker.previous_all_action_info = env_action_info |
|
env_worker.send(EnvironmentCommand.STEP, env_action_info) |
|
env_worker.waiting = True |
|
|
|
def _restart_failed_workers(self, first_failure: EnvironmentResponse) -> None: |
|
if first_failure.cmd != EnvironmentCommand.ENV_EXITED: |
|
return |
|
|
|
|
|
other_failures: Dict[int, Exception] = self._drain_step_queue() |
|
|
|
failures: Dict[int, Exception] = { |
|
**{first_failure.worker_id: first_failure.payload}, |
|
**other_failures, |
|
} |
|
for worker_id, ex in failures.items(): |
|
self._assert_worker_can_restart(worker_id, ex) |
|
logger.warning(f"Restarting worker[{worker_id}] after '{ex}'") |
|
self.recent_restart_timestamps[worker_id].append(datetime.datetime.now()) |
|
self.restart_counts[worker_id] += 1 |
|
self.env_workers[worker_id] = self.create_worker( |
|
worker_id, self.step_queue, self.env_factory, self.run_options |
|
) |
|
|
|
|
|
self.reset(self.env_parameters) |
|
|
|
def _drain_step_queue(self) -> Dict[int, Exception]: |
|
""" |
|
Drains all steps out of the step queue and returns all exceptions from crashed workers. |
|
This will effectively pause all workers so that they won't do anything until _queue_steps is called. |
|
""" |
|
all_failures = {} |
|
workers_still_pending = {w.worker_id for w in self.env_workers if w.waiting} |
|
deadline = datetime.datetime.now() + datetime.timedelta(minutes=1) |
|
while workers_still_pending and deadline > datetime.datetime.now(): |
|
try: |
|
while True: |
|
step: EnvironmentResponse = self.step_queue.get_nowait() |
|
if step.cmd == EnvironmentCommand.ENV_EXITED: |
|
workers_still_pending.add(step.worker_id) |
|
all_failures[step.worker_id] = step.payload |
|
else: |
|
workers_still_pending.remove(step.worker_id) |
|
self.env_workers[step.worker_id].waiting = False |
|
except EmptyQueueException: |
|
pass |
|
if deadline < datetime.datetime.now(): |
|
still_waiting = {w.worker_id for w in self.env_workers if w.waiting} |
|
raise TimeoutError(f"Workers {still_waiting} stuck in waiting state") |
|
return all_failures |
|
|
|
def _assert_worker_can_restart(self, worker_id: int, exception: Exception) -> None: |
|
""" |
|
Checks if we can recover from an exception from a worker. |
|
If the restart limit is exceeded it will raise a UnityCommunicationException. |
|
If the exception is not recoverable it re-raises the exception. |
|
""" |
|
if ( |
|
isinstance(exception, UnityCommunicationException) |
|
or isinstance(exception, UnityTimeOutException) |
|
or isinstance(exception, UnityEnvironmentException) |
|
or isinstance(exception, UnityCommunicatorStoppedException) |
|
): |
|
if self._worker_has_restart_quota(worker_id): |
|
return |
|
else: |
|
logger.error( |
|
f"Worker {worker_id} exceeded the allowed number of restarts." |
|
) |
|
raise exception |
|
raise exception |
|
|
|
def _worker_has_restart_quota(self, worker_id: int) -> bool: |
|
self._drop_old_restart_timestamps(worker_id) |
|
max_lifetime_restarts = self.run_options.env_settings.max_lifetime_restarts |
|
max_limit_check = ( |
|
max_lifetime_restarts == -1 |
|
or self.restart_counts[worker_id] < max_lifetime_restarts |
|
) |
|
|
|
rate_limit_n = self.run_options.env_settings.restarts_rate_limit_n |
|
rate_limit_check = ( |
|
rate_limit_n == -1 |
|
or len(self.recent_restart_timestamps[worker_id]) < rate_limit_n |
|
) |
|
|
|
return rate_limit_check and max_limit_check |
|
|
|
def _drop_old_restart_timestamps(self, worker_id: int) -> None: |
|
""" |
|
Drops environment restart timestamps that are outside of the current window. |
|
""" |
|
|
|
def _filter(t: datetime.datetime) -> bool: |
|
return t > datetime.datetime.now() - datetime.timedelta( |
|
seconds=self.run_options.env_settings.restarts_rate_limit_period_s |
|
) |
|
|
|
self.recent_restart_timestamps[worker_id] = list( |
|
filter(_filter, self.recent_restart_timestamps[worker_id]) |
|
) |
|
|
|
def _step(self) -> List[EnvironmentStep]: |
|
|
|
self._queue_steps() |
|
|
|
worker_steps: List[EnvironmentResponse] = [] |
|
step_workers: Set[int] = set() |
|
|
|
|
|
while len(worker_steps) < 1: |
|
try: |
|
while True: |
|
step: EnvironmentResponse = self.step_queue.get_nowait() |
|
if step.cmd == EnvironmentCommand.ENV_EXITED: |
|
|
|
self._restart_failed_workers(step) |
|
|
|
worker_steps.clear() |
|
step_workers.clear() |
|
self._queue_steps() |
|
elif step.worker_id not in step_workers: |
|
self.env_workers[step.worker_id].waiting = False |
|
worker_steps.append(step) |
|
step_workers.add(step.worker_id) |
|
except EmptyQueueException: |
|
pass |
|
step_infos = self._postprocess_steps(worker_steps) |
|
return step_infos |
|
|
|
def _reset_env(self, config: Optional[Dict] = None) -> List[EnvironmentStep]: |
|
while any(ew.waiting for ew in self.env_workers): |
|
if not self.step_queue.empty(): |
|
step = self.step_queue.get_nowait() |
|
self.env_workers[step.worker_id].waiting = False |
|
|
|
self.set_env_parameters(config) |
|
|
|
for ew in self.env_workers: |
|
ew.send(EnvironmentCommand.RESET, config) |
|
|
|
for ew in self.env_workers: |
|
ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}, {}) |
|
return list(map(lambda ew: ew.previous_step, self.env_workers)) |
|
|
|
def set_env_parameters(self, config: Dict = None) -> None: |
|
""" |
|
Sends environment parameter settings to C# via the |
|
EnvironmentParametersSidehannel for each worker. |
|
:param config: Dict of environment parameter keys and values |
|
""" |
|
self.env_parameters = config |
|
for ew in self.env_workers: |
|
ew.send(EnvironmentCommand.ENVIRONMENT_PARAMETERS, config) |
|
|
|
def on_training_started( |
|
self, behavior_name: str, trainer_settings: TrainerSettings |
|
) -> None: |
|
""" |
|
Handle traing starting for a new behavior type. Generally nothing is necessary here. |
|
:param behavior_name: |
|
:param trainer_settings: |
|
:return: |
|
""" |
|
for ew in self.env_workers: |
|
ew.send( |
|
EnvironmentCommand.TRAINING_STARTED, (behavior_name, trainer_settings) |
|
) |
|
|
|
@property |
|
def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]: |
|
result: Dict[BehaviorName, BehaviorSpec] = {} |
|
for worker in self.env_workers: |
|
worker.send(EnvironmentCommand.BEHAVIOR_SPECS) |
|
result.update(worker.recv().payload) |
|
return result |
|
|
|
def close(self) -> None: |
|
logger.debug("SubprocessEnvManager closing.") |
|
for env_worker in self.env_workers: |
|
env_worker.request_close() |
|
|
|
deadline = time.time() + WORKER_SHUTDOWN_TIMEOUT_S |
|
while self.workers_alive > 0 and time.time() < deadline: |
|
try: |
|
step: EnvironmentResponse = self.step_queue.get_nowait() |
|
env_worker = self.env_workers[step.worker_id] |
|
if step.cmd == EnvironmentCommand.CLOSED and not env_worker.closed: |
|
env_worker.closed = True |
|
self.workers_alive -= 1 |
|
|
|
except EmptyQueueException: |
|
pass |
|
self.step_queue.close() |
|
|
|
if self.workers_alive > 0: |
|
logger.error("SubprocessEnvManager had workers that didn't signal shutdown") |
|
for env_worker in self.env_workers: |
|
if not env_worker.closed and env_worker.process.is_alive(): |
|
env_worker.process.terminate() |
|
logger.error( |
|
"A SubprocessEnvManager worker did not shut down correctly so it was forcefully terminated." |
|
) |
|
self.step_queue.join_thread() |
|
|
|
def _postprocess_steps( |
|
self, env_steps: List[EnvironmentResponse] |
|
) -> List[EnvironmentStep]: |
|
step_infos = [] |
|
timer_nodes = [] |
|
for step in env_steps: |
|
payload: StepResponse = step.payload |
|
env_worker = self.env_workers[step.worker_id] |
|
new_step = EnvironmentStep( |
|
payload.all_step_result, |
|
step.worker_id, |
|
env_worker.previous_all_action_info, |
|
payload.environment_stats, |
|
) |
|
step_infos.append(new_step) |
|
env_worker.previous_step = new_step |
|
|
|
if payload.timer_root: |
|
timer_nodes.append(payload.timer_root) |
|
|
|
if timer_nodes: |
|
with hierarchical_timer("workers") as main_timer_node: |
|
for worker_timer_node in timer_nodes: |
|
main_timer_node.merge( |
|
worker_timer_node, root_name="worker_root", is_parallel=True |
|
) |
|
|
|
return step_infos |
|
|
|
@timed |
|
def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]: |
|
all_action_info: Dict[str, ActionInfo] = {} |
|
for brain_name, step_tuple in last_step.current_all_step_result.items(): |
|
if brain_name in self.policies: |
|
all_action_info[brain_name] = self.policies[brain_name].get_action( |
|
step_tuple[0], last_step.worker_id |
|
) |
|
return all_action_info |
|
|