AnnaMats's picture
Second Push
05c9ac2
from mlagents.torch_utils import torch
from mlagents.trainers.torch_entities.layers import (
Swish,
linear_layer,
lstm_layer,
Initialization,
LSTM,
LayerNorm,
)
def test_swish():
layer = Swish()
input_tensor = torch.Tensor([[1, 2, 3], [4, 5, 6]])
target_tensor = torch.mul(input_tensor, torch.sigmoid(input_tensor))
assert torch.all(torch.eq(layer(input_tensor), target_tensor))
def test_initialization_layer():
torch.manual_seed(0)
# Test Zero
layer = linear_layer(
3, 4, kernel_init=Initialization.Zero, bias_init=Initialization.Zero
)
assert torch.all(torch.eq(layer.weight.data, torch.zeros_like(layer.weight.data)))
assert torch.all(torch.eq(layer.bias.data, torch.zeros_like(layer.bias.data)))
def test_lstm_layer():
torch.manual_seed(0)
# Test zero for LSTM
layer = lstm_layer(
4, 4, kernel_init=Initialization.Zero, bias_init=Initialization.Zero
)
for name, param in layer.named_parameters():
if "weight" in name:
assert torch.all(torch.eq(param.data, torch.zeros_like(param.data)))
elif "bias" in name:
assert torch.all(
torch.eq(param.data[4:8], torch.ones_like(param.data[4:8]))
)
def test_lstm_class():
torch.manual_seed(0)
input_size = 12
memory_size = 64
batch_size = 8
seq_len = 16
lstm = LSTM(input_size, memory_size)
assert lstm.memory_size == memory_size
sample_input = torch.ones((batch_size, seq_len, input_size))
sample_memories = torch.ones((1, batch_size, memory_size))
out, mem = lstm(sample_input, sample_memories)
# Hidden size should be half of memory_size
assert out.shape == (batch_size, seq_len, memory_size // 2)
assert mem.shape == (1, batch_size, memory_size)
def test_layer_norm():
torch.manual_seed(0)
torch_ln = torch.nn.LayerNorm(10, elementwise_affine=False)
cust_ln = LayerNorm()
sample_input = torch.rand(10)
assert torch.all(
torch.isclose(
torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0
)
)
sample_input = torch.rand((4, 10))
assert torch.all(
torch.isclose(
torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0
)
)
sample_input = torch.rand((7, 6, 10))
assert torch.all(
torch.isclose(
torch_ln(sample_input), cust_ln(sample_input), atol=1e-5, rtol=0.0
)
)