AnnaMats's picture
Second Push
05c9ac2
from typing import Callable, List, Dict, Tuple, Optional, Union, Any
import abc
from mlagents.torch_utils import torch, nn
from mlagents_envs.base_env import ActionSpec, ObservationSpec, ObservationType
from mlagents.trainers.torch_entities.action_model import ActionModel
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.settings import NetworkSettings, EncoderType, ConditioningType
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.torch_entities.decoders import ValueHeads
from mlagents.trainers.torch_entities.layers import LSTM, LinearEncoder
from mlagents.trainers.torch_entities.encoders import VectorInput
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.trajectory import ObsUtil
from mlagents.trainers.torch_entities.conditioning import ConditionalEncoder
from mlagents.trainers.torch_entities.attention import (
EntityEmbedding,
ResidualSelfAttention,
get_zero_entities_mask,
)
from mlagents.trainers.exception import UnityTrainerException
ActivationFunction = Callable[[torch.Tensor], torch.Tensor]
EncoderFunction = Callable[
[torch.Tensor, int, ActivationFunction, int, str, bool], torch.Tensor
]
EPSILON = 1e-7
class ObservationEncoder(nn.Module):
ATTENTION_EMBEDDING_SIZE = 128 # The embedding size of attention is fixed
def __init__(
self,
observation_specs: List[ObservationSpec],
h_size: int,
vis_encode_type: EncoderType,
normalize: bool = False,
):
"""
Returns an ObservationEncoder that can process and encode a set of observations.
Will use an RSA if needed for variable length observations.
"""
super().__init__()
self.processors, self.embedding_sizes = ModelUtils.create_input_processors(
observation_specs,
h_size,
vis_encode_type,
self.ATTENTION_EMBEDDING_SIZE,
normalize=normalize,
)
self.rsa, self.x_self_encoder = ModelUtils.create_residual_self_attention(
self.processors, self.embedding_sizes, self.ATTENTION_EMBEDDING_SIZE
)
if self.rsa is not None:
total_enc_size = sum(self.embedding_sizes) + self.ATTENTION_EMBEDDING_SIZE
else:
total_enc_size = sum(self.embedding_sizes)
self.normalize = normalize
self._total_enc_size = total_enc_size
self._total_goal_enc_size = 0
self._goal_processor_indices: List[int] = []
for i in range(len(observation_specs)):
if observation_specs[i].observation_type == ObservationType.GOAL_SIGNAL:
self._total_goal_enc_size += self.embedding_sizes[i]
self._goal_processor_indices.append(i)
@property
def total_enc_size(self) -> int:
"""
Returns the total encoding size for this ObservationEncoder.
"""
return self._total_enc_size
@property
def total_goal_enc_size(self) -> int:
"""
Returns the total goal encoding size for this ObservationEncoder.
"""
return self._total_goal_enc_size
def update_normalization(self, buffer: AgentBuffer) -> None:
obs = ObsUtil.from_buffer(buffer, len(self.processors))
for vec_input, enc in zip(obs, self.processors):
if isinstance(enc, VectorInput):
enc.update_normalization(torch.as_tensor(vec_input.to_ndarray()))
def copy_normalization(self, other_encoder: "ObservationEncoder") -> None:
if self.normalize:
for n1, n2 in zip(self.processors, other_encoder.processors):
if isinstance(n1, VectorInput) and isinstance(n2, VectorInput):
n1.copy_normalization(n2)
def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
"""
Encode observations using a list of processors and an RSA.
:param inputs: List of Tensors corresponding to a set of obs.
"""
encodes = []
var_len_processor_inputs: List[Tuple[nn.Module, torch.Tensor]] = []
for idx, processor in enumerate(self.processors):
if not isinstance(processor, EntityEmbedding):
# The input can be encoded without having to process other inputs
obs_input = inputs[idx]
processed_obs = processor(obs_input)
encodes.append(processed_obs)
else:
var_len_processor_inputs.append((processor, inputs[idx]))
if len(encodes) != 0:
encoded_self = torch.cat(encodes, dim=1)
input_exist = True
else:
input_exist = False
if len(var_len_processor_inputs) > 0 and self.rsa is not None:
# Some inputs need to be processed with a variable length encoder
masks = get_zero_entities_mask([p_i[1] for p_i in var_len_processor_inputs])
embeddings: List[torch.Tensor] = []
processed_self = (
self.x_self_encoder(encoded_self)
if input_exist and self.x_self_encoder is not None
else None
)
for processor, var_len_input in var_len_processor_inputs:
embeddings.append(processor(processed_self, var_len_input))
qkv = torch.cat(embeddings, dim=1)
attention_embedding = self.rsa(qkv, masks)
if not input_exist:
encoded_self = torch.cat([attention_embedding], dim=1)
input_exist = True
else:
encoded_self = torch.cat([encoded_self, attention_embedding], dim=1)
if not input_exist:
raise UnityTrainerException(
"The trainer was unable to process any of the provided inputs. "
"Make sure the trained agents has at least one sensor attached to them."
)
return encoded_self
def get_goal_encoding(self, inputs: List[torch.Tensor]) -> torch.Tensor:
"""
Encode observations corresponding to goals using a list of processors.
:param inputs: List of Tensors corresponding to a set of obs.
"""
encodes = []
for idx in self._goal_processor_indices:
processor = self.processors[idx]
if not isinstance(processor, EntityEmbedding):
# The input can be encoded without having to process other inputs
obs_input = inputs[idx]
processed_obs = processor(obs_input)
encodes.append(processed_obs)
else:
raise UnityTrainerException(
"The one of the goals uses variable length observations. This use "
"case is not supported."
)
if len(encodes) != 0:
encoded = torch.cat(encodes, dim=1)
else:
raise UnityTrainerException(
"Trainer was unable to process any of the goals provided as input."
)
return encoded
class NetworkBody(nn.Module):
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
encoded_act_size: int = 0,
):
super().__init__()
self.normalize = network_settings.normalize
self.use_lstm = network_settings.memory is not None
self.h_size = network_settings.hidden_units
self.m_size = (
network_settings.memory.memory_size
if network_settings.memory is not None
else 0
)
self.observation_encoder = ObservationEncoder(
observation_specs,
self.h_size,
network_settings.vis_encode_type,
self.normalize,
)
self.processors = self.observation_encoder.processors
total_enc_size = self.observation_encoder.total_enc_size
total_enc_size += encoded_act_size
if (
self.observation_encoder.total_goal_enc_size > 0
and network_settings.goal_conditioning_type == ConditioningType.HYPER
):
self._body_endoder = ConditionalEncoder(
total_enc_size,
self.observation_encoder.total_goal_enc_size,
self.h_size,
network_settings.num_layers,
1,
)
else:
self._body_endoder = LinearEncoder(
total_enc_size, network_settings.num_layers, self.h_size
)
if self.use_lstm:
self.lstm = LSTM(self.h_size, self.m_size)
else:
self.lstm = None # type: ignore
def update_normalization(self, buffer: AgentBuffer) -> None:
self.observation_encoder.update_normalization(buffer)
def copy_normalization(self, other_network: "NetworkBody") -> None:
self.observation_encoder.copy_normalization(other_network.observation_encoder)
@property
def memory_size(self) -> int:
return self.lstm.memory_size if self.use_lstm else 0
def forward(
self,
inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
encoded_self = self.observation_encoder(inputs)
if actions is not None:
encoded_self = torch.cat([encoded_self, actions], dim=1)
if isinstance(self._body_endoder, ConditionalEncoder):
goal = self.observation_encoder.get_goal_encoding(inputs)
encoding = self._body_endoder(encoded_self, goal)
else:
encoding = self._body_endoder(encoded_self)
if self.use_lstm:
# Resize to (batch, sequence length, encoding size)
encoding = encoding.reshape([-1, sequence_length, self.h_size])
encoding, memories = self.lstm(encoding, memories)
encoding = encoding.reshape([-1, self.m_size // 2])
return encoding, memories
class MultiAgentNetworkBody(torch.nn.Module):
"""
A network body that uses a self attention layer to handle state
and action input from a potentially variable number of agents that
share the same observation and action space.
"""
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
):
super().__init__()
self.normalize = network_settings.normalize
self.use_lstm = network_settings.memory is not None
self.h_size = network_settings.hidden_units
self.m_size = (
network_settings.memory.memory_size
if network_settings.memory is not None
else 0
)
self.action_spec = action_spec
self.observation_encoder = ObservationEncoder(
observation_specs,
self.h_size,
network_settings.vis_encode_type,
self.normalize,
)
self.processors = self.observation_encoder.processors
# Modules for multi-agent self-attention
obs_only_ent_size = self.observation_encoder.total_enc_size
q_ent_size = (
obs_only_ent_size
+ sum(self.action_spec.discrete_branches)
+ self.action_spec.continuous_size
)
attention_embeding_size = self.h_size
self.obs_encoder = EntityEmbedding(
obs_only_ent_size, None, attention_embeding_size
)
self.obs_action_encoder = EntityEmbedding(
q_ent_size, None, attention_embeding_size
)
self.self_attn = ResidualSelfAttention(attention_embeding_size)
self.linear_encoder = LinearEncoder(
attention_embeding_size,
network_settings.num_layers,
self.h_size,
kernel_gain=(0.125 / self.h_size) ** 0.5,
)
if self.use_lstm:
self.lstm = LSTM(self.h_size, self.m_size)
else:
self.lstm = None # type: ignore
self._current_max_agents = torch.nn.Parameter(
torch.as_tensor(1), requires_grad=False
)
@property
def memory_size(self) -> int:
return self.lstm.memory_size if self.use_lstm else 0
def update_normalization(self, buffer: AgentBuffer) -> None:
self.observation_encoder.update_normalization(buffer)
def copy_normalization(self, other_network: "MultiAgentNetworkBody") -> None:
self.observation_encoder.copy_normalization(other_network.observation_encoder)
def _get_masks_from_nans(self, obs_tensors: List[torch.Tensor]) -> torch.Tensor:
"""
Get attention masks by grabbing an arbitrary obs across all the agents
Since these are raw obs, the padded values are still NaN
"""
only_first_obs = [_all_obs[0] for _all_obs in obs_tensors]
# Just get the first element in each obs regardless of its dimension. This will speed up
# searching for NaNs.
only_first_obs_flat = torch.stack(
[_obs.flatten(start_dim=1)[:, 0] for _obs in only_first_obs], dim=1
)
# Get the mask from NaNs
attn_mask = only_first_obs_flat.isnan().float()
return attn_mask
def _copy_and_remove_nans_from_obs(
self, all_obs: List[List[torch.Tensor]], attention_mask: torch.Tensor
) -> List[List[torch.Tensor]]:
"""
Helper function to remove NaNs from observations using an attention mask.
"""
obs_with_no_nans = []
for i_agent, single_agent_obs in enumerate(all_obs):
no_nan_obs = []
for obs in single_agent_obs:
new_obs = obs.clone()
new_obs[attention_mask.bool()[:, i_agent], ::] = 0.0 # Remove NaNs fast
no_nan_obs.append(new_obs)
obs_with_no_nans.append(no_nan_obs)
return obs_with_no_nans
def forward(
self,
obs_only: List[List[torch.Tensor]],
obs: List[List[torch.Tensor]],
actions: List[AgentAction],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns sampled actions.
If memory is enabled, return the memories as well.
:param obs_only: Observations to be processed that do not have corresponding actions.
These are encoded with the obs_encoder.
:param obs: Observations to be processed that do have corresponding actions.
After concatenation with actions, these are processed with obs_action_encoder.
:param actions: After concatenation with obs, these are processed with obs_action_encoder.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
"""
self_attn_masks = []
self_attn_inputs = []
concat_f_inp = []
if obs:
obs_attn_mask = self._get_masks_from_nans(obs)
obs = self._copy_and_remove_nans_from_obs(obs, obs_attn_mask)
for inputs, action in zip(obs, actions):
encoded = self.observation_encoder(inputs)
cat_encodes = [
encoded,
action.to_flat(self.action_spec.discrete_branches),
]
concat_f_inp.append(torch.cat(cat_encodes, dim=1))
f_inp = torch.stack(concat_f_inp, dim=1)
self_attn_masks.append(obs_attn_mask)
self_attn_inputs.append(self.obs_action_encoder(None, f_inp))
concat_encoded_obs = []
if obs_only:
obs_only_attn_mask = self._get_masks_from_nans(obs_only)
obs_only = self._copy_and_remove_nans_from_obs(obs_only, obs_only_attn_mask)
for inputs in obs_only:
encoded = self.observation_encoder(inputs)
concat_encoded_obs.append(encoded)
g_inp = torch.stack(concat_encoded_obs, dim=1)
self_attn_masks.append(obs_only_attn_mask)
self_attn_inputs.append(self.obs_encoder(None, g_inp))
encoded_entity = torch.cat(self_attn_inputs, dim=1)
encoded_state = self.self_attn(encoded_entity, self_attn_masks)
flipped_masks = 1 - torch.cat(self_attn_masks, dim=1)
num_agents = torch.sum(flipped_masks, dim=1, keepdim=True)
if torch.max(num_agents).item() > self._current_max_agents:
self._current_max_agents = torch.nn.Parameter(
torch.as_tensor(torch.max(num_agents).item()), requires_grad=False
)
# num_agents will be -1 for a single agent and +1 when the current maximum is reached
num_agents = num_agents * 2.0 / self._current_max_agents - 1
encoding = self.linear_encoder(encoded_state)
if self.use_lstm:
# Resize to (batch, sequence length, encoding size)
encoding = encoding.reshape([-1, sequence_length, self.h_size])
encoding, memories = self.lstm(encoding, memories)
encoding = encoding.reshape([-1, self.m_size // 2])
encoding = torch.cat([encoding, num_agents], dim=1)
return encoding, memories
class Critic(abc.ABC):
@abc.abstractmethod
def update_normalization(self, buffer: AgentBuffer) -> None:
"""
Updates normalization of Actor based on the provided List of vector obs.
:param vector_obs: A List of vector obs as tensors.
"""
pass
def critic_pass(
self,
inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
"""
Get value outputs for the given obs.
:param inputs: List of inputs as tensors.
:param memories: Tensor of memories, if using memory. Otherwise, None.
:returns: Dict of reward stream to output tensor for values.
"""
pass
class ValueNetwork(nn.Module, Critic):
def __init__(
self,
stream_names: List[str],
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
encoded_act_size: int = 0,
outputs_per_stream: int = 1,
):
# This is not a typo, we want to call __init__ of nn.Module
nn.Module.__init__(self)
self.network_body = NetworkBody(
observation_specs, network_settings, encoded_act_size=encoded_act_size
)
if network_settings.memory is not None:
encoding_size = network_settings.memory.memory_size // 2
else:
encoding_size = network_settings.hidden_units
self.value_heads = ValueHeads(stream_names, encoding_size, outputs_per_stream)
def update_normalization(self, buffer: AgentBuffer) -> None:
self.network_body.update_normalization(buffer)
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def critic_pass(
self,
inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
value_outputs, critic_mem_out = self.forward(
inputs, memories=memories, sequence_length=sequence_length
)
return value_outputs, critic_mem_out
def forward(
self,
inputs: List[torch.Tensor],
actions: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories = self.network_body(
inputs, actions, memories, sequence_length
)
output = self.value_heads(encoding)
return output, memories
class Actor(abc.ABC):
@abc.abstractmethod
def update_normalization(self, buffer: AgentBuffer) -> None:
"""
Updates normalization of Actor based on the provided List of vector obs.
:param vector_obs: A List of vector obs as tensors.
"""
pass
def get_action_and_stats(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[AgentAction, Dict[str, Any], torch.Tensor]:
"""
Returns sampled actions.
If memory is enabled, return the memories as well.
:param inputs: A List of inputs as tensors.
:param masks: If using discrete actions, a Tensor of action masks.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories.
Memories will be None if not using memory.
"""
pass
def get_stats(
self,
inputs: List[torch.Tensor],
actions: AgentAction,
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Dict[str, Any]:
"""
Returns log_probs for actions and entropies.
If memory is enabled, return the memories as well.
:param inputs: A List of inputs as tensors.
:param actions: AgentAction of actions.
:param masks: If using discrete actions, a Tensor of action masks.
:param memories: If using memory, a Tensor of initial memories.
:param sequence_length: If using memory, the sequence length.
:return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories.
Memories will be None if not using memory.
"""
pass
@abc.abstractmethod
def forward(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
) -> Tuple[Union[int, torch.Tensor], ...]:
"""
Forward pass of the Actor for inference. This is required for export to ONNX, and
the inputs and outputs of this method should not be changed without a respective change
in the ONNX export code.
"""
pass
class SimpleActor(nn.Module, Actor):
MODEL_EXPORT_VERSION = 3 # Corresponds to ModelApiVersion.MLAgents2_0
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
super().__init__()
self.action_spec = action_spec
self.version_number = torch.nn.Parameter(
torch.Tensor([self.MODEL_EXPORT_VERSION]), requires_grad=False
)
self.is_continuous_int_deprecated = torch.nn.Parameter(
torch.Tensor([int(self.action_spec.is_continuous())]), requires_grad=False
)
self.continuous_act_size_vector = torch.nn.Parameter(
torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
)
self.discrete_act_size_vector = torch.nn.Parameter(
torch.Tensor([self.action_spec.discrete_branches]), requires_grad=False
)
self.act_size_vector_deprecated = torch.nn.Parameter(
torch.Tensor(
[
self.action_spec.continuous_size
+ sum(self.action_spec.discrete_branches)
]
),
requires_grad=False,
)
self.network_body = NetworkBody(observation_specs, network_settings)
if network_settings.memory is not None:
self.encoding_size = network_settings.memory.memory_size // 2
else:
self.encoding_size = network_settings.hidden_units
self.memory_size_vector = torch.nn.Parameter(
torch.Tensor([int(self.network_body.memory_size)]), requires_grad=False
)
self.action_model = ActionModel(
self.encoding_size,
action_spec,
conditional_sigma=conditional_sigma,
tanh_squash=tanh_squash,
deterministic=network_settings.deterministic,
)
@property
def memory_size(self) -> int:
return self.network_body.memory_size
def update_normalization(self, buffer: AgentBuffer) -> None:
self.network_body.update_normalization(buffer)
def get_action_and_stats(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[AgentAction, Dict[str, Any], torch.Tensor]:
encoding, memories = self.network_body(
inputs, memories=memories, sequence_length=sequence_length
)
action, log_probs, entropies = self.action_model(encoding, masks)
run_out = {}
# This is the clipped action which is not saved to the buffer
# but is exclusively sent to the environment.
run_out["env_action"] = action.to_action_tuple(
clip=self.action_model.clip_action
)
run_out["log_probs"] = log_probs
run_out["entropy"] = entropies
return action, run_out, memories
def get_stats(
self,
inputs: List[torch.Tensor],
actions: AgentAction,
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Dict[str, Any]:
encoding, actor_mem_outs = self.network_body(
inputs, memories=memories, sequence_length=sequence_length
)
log_probs, entropies = self.action_model.evaluate(encoding, masks, actions)
run_out = {}
run_out["log_probs"] = log_probs
run_out["entropy"] = entropies
return run_out
def forward(
self,
inputs: List[torch.Tensor],
masks: Optional[torch.Tensor] = None,
memories: Optional[torch.Tensor] = None,
) -> Tuple[Union[int, torch.Tensor], ...]:
"""
Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.
At this moment, torch.onnx.export() doesn't accept None as tensor to be exported,
so the size of return tuple varies with action spec.
"""
encoding, memories_out = self.network_body(
inputs, memories=memories, sequence_length=1
)
(
cont_action_out,
disc_action_out,
action_out_deprecated,
deterministic_cont_action_out,
deterministic_disc_action_out,
) = self.action_model.get_action_out(encoding, masks)
export_out = [self.version_number, self.memory_size_vector]
if self.action_spec.continuous_size > 0:
export_out += [
cont_action_out,
self.continuous_act_size_vector,
deterministic_cont_action_out,
]
if self.action_spec.discrete_size > 0:
export_out += [
disc_action_out,
self.discrete_act_size_vector,
deterministic_disc_action_out,
]
if self.network_body.memory_size > 0:
export_out += [memories_out]
return tuple(export_out)
class SharedActorCritic(SimpleActor, Critic):
def __init__(
self,
observation_specs: List[ObservationSpec],
network_settings: NetworkSettings,
action_spec: ActionSpec,
stream_names: List[str],
conditional_sigma: bool = False,
tanh_squash: bool = False,
):
self.use_lstm = network_settings.memory is not None
super().__init__(
observation_specs,
network_settings,
action_spec,
conditional_sigma,
tanh_squash,
)
self.stream_names = stream_names
self.value_heads = ValueHeads(stream_names, self.encoding_size)
def critic_pass(
self,
inputs: List[torch.Tensor],
memories: Optional[torch.Tensor] = None,
sequence_length: int = 1,
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
encoding, memories_out = self.network_body(
inputs, memories=memories, sequence_length=sequence_length
)
return self.value_heads(encoding), memories_out
class GlobalSteps(nn.Module):
def __init__(self):
super().__init__()
self.__global_step = nn.Parameter(
torch.Tensor([0]).to(torch.int64), requires_grad=False
)
@property
def current_step(self):
return int(self.__global_step.item())
@current_step.setter
def current_step(self, value):
self.__global_step[:] = value
def increment(self, value):
self.__global_step += value
class LearningRate(nn.Module):
def __init__(self, lr):
# Todo: add learning rate decay
super().__init__()
self.learning_rate = torch.Tensor([lr])