my-awesome-model / README.md
Annabel's picture
pushing files to the repo from the example!
370d283
metadata
license: mit
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_file: example.pkl
widget:
  structuredData:
    area error:
      - 30.29
      - 96.05
      - 48.31
    compactness error:
      - 0.01911
      - 0.01652
      - 0.01484
    concave points error:
      - 0.01037
      - 0.0137
      - 0.01093
    concavity error:
      - 0.02701
      - 0.02269
      - 0.02813
    fractal dimension error:
      - 0.003586
      - 0.001698
      - 0.002461
    mean area:
      - 481.9
      - 1130
      - 748.9
    mean compactness:
      - 0.1058
      - 0.1029
      - 0.1223
    mean concave points:
      - 0.03821
      - 0.07951
      - 0.08087
    mean concavity:
      - 0.08005
      - 0.108
      - 0.1466
    mean fractal dimension:
      - 0.06373
      - 0.05461
      - 0.05796
    mean perimeter:
      - 81.09
      - 123.6
      - 101.7
    mean radius:
      - 12.47
      - 18.94
      - 15.46
    mean smoothness:
      - 0.09965
      - 0.09009
      - 0.1092
    mean symmetry:
      - 0.1925
      - 0.1582
      - 0.1931
    mean texture:
      - 18.6
      - 21.31
      - 19.48
    perimeter error:
      - 2.497
      - 5.486
      - 3.094
    radius error:
      - 0.3961
      - 0.7888
      - 0.4743
    smoothness error:
      - 0.006953
      - 0.004444
      - 0.00624
    symmetry error:
      - 0.01782
      - 0.01386
      - 0.01397
    texture error:
      - 1.044
      - 0.7975
      - 0.7859
    worst area:
      - 677.9
      - 1866
      - 1156
    worst compactness:
      - 0.2378
      - 0.2336
      - 0.2394
    worst concave points:
      - 0.1015
      - 0.1789
      - 0.1514
    worst concavity:
      - 0.2671
      - 0.2687
      - 0.3791
    worst fractal dimension:
      - 0.0875
      - 0.06589
      - 0.08019
    worst perimeter:
      - 96.05
      - 165.9
      - 124.9
    worst radius:
      - 14.97
      - 24.86
      - 19.26
    worst smoothness:
      - 0.1426
      - 0.1193
      - 0.1546
    worst symmetry:
      - 0.3014
      - 0.2551
      - 0.2837
    worst texture:
      - 24.64
      - 26.58
      - 26

Model description

This is a DecisionTreeClassifier model trained on breast cancer dataset.

Intended uses & limitations

This model is not ready to be used in production.

Training Procedure

Hyperparameters

The model is trained with below hyperparameters.

Click to expand
Hyperparameter Value
ccp_alpha 0.0
class_weight
criterion gini
max_depth
max_features
max_leaf_nodes
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
random_state
splitter best

Model Plot

The model plot is below.

DecisionTreeClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value
accuracy 0.929825
f1 score 0.929825

How to Get Started with the Model

Use the code below to get started with the model.

import joblib
import json
import pandas as pd
clf = joblib.load(example.pkl)
with open("config.json") as f:
    config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))

Model Card Authors

This model card is written by following authors:

skops_user

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

bibtex
@inproceedings{...,year={2020}}

Additional Content

confusion_matrix

confusion_matrix