|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: AnonymousCS/populism_multilingual_roberta_base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: populism_model57 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# populism_model57 |
|
|
|
This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4202 |
|
- Accuracy: 0.9208 |
|
- F1: 0.5349 |
|
- Recall: 0.7419 |
|
- Precision: 0.4182 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.3172 | 1.0 | 64 | 0.2908 | 0.8930 | 0.4882 | 0.8306 | 0.3456 | |
|
| 0.2509 | 2.0 | 128 | 0.3295 | 0.9173 | 0.5348 | 0.7742 | 0.4085 | |
|
| 0.2087 | 3.0 | 192 | 0.3780 | 0.9178 | 0.5257 | 0.7419 | 0.4071 | |
|
| 0.1541 | 4.0 | 256 | 0.4652 | 0.9287 | 0.5355 | 0.6694 | 0.4462 | |
|
| 0.1453 | 5.0 | 320 | 0.4202 | 0.9208 | 0.5349 | 0.7419 | 0.4182 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|