|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: AnonymousCS/populism_multilingual_roberta_base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: populism_model60 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# populism_model60 |
|
|
|
This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2300 |
|
- Accuracy: 0.9370 |
|
- F1: 0.6944 |
|
- Recall: 0.8929 |
|
- Precision: 0.5682 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| No log | 1.0 | 11 | 0.2097 | 0.9284 | 0.6753 | 0.9286 | 0.5306 | |
|
| No log | 2.0 | 22 | 0.1999 | 0.9054 | 0.6118 | 0.9286 | 0.4561 | |
|
| No log | 3.0 | 33 | 0.2408 | 0.9341 | 0.6933 | 0.9286 | 0.5532 | |
|
| No log | 4.0 | 44 | 0.2052 | 0.9140 | 0.6341 | 0.9286 | 0.4815 | |
|
| 0.17 | 5.0 | 55 | 0.2300 | 0.9370 | 0.6944 | 0.8929 | 0.5682 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|