metadata
library_name: transformers
license: mit
base_model: AnonymousCS/populism_multilingual_roberta_base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: populism_model73
results: []
populism_model73
This model is a fine-tuned version of AnonymousCS/populism_multilingual_roberta_base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4106
- Accuracy: 0.9221
- F1: 0.4722
- Recall: 0.7391
- Precision: 0.3469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
No log | 1.0 | 16 | 0.2425 | 0.9098 | 0.45 | 0.7826 | 0.3158 |
No log | 2.0 | 32 | 0.3190 | 0.8709 | 0.3883 | 0.8696 | 0.25 |
No log | 3.0 | 48 | 0.4027 | 0.9385 | 0.5161 | 0.6957 | 0.4103 |
0.2109 | 4.0 | 64 | 0.3850 | 0.9180 | 0.4595 | 0.7391 | 0.3333 |
0.2109 | 5.0 | 80 | 0.4106 | 0.9221 | 0.4722 | 0.7391 | 0.3469 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0