File size: 5,566 Bytes
c50fe14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from torch.profiler import ProfilerActivity, profile, record_function
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from torch import nn
import torch
torch.set_float32_matmul_precision('high')
import json
from argparse import ArgumentParser

def sample(outputs):
    next_token_logits = outputs.logits[:, -1, :]
    probs = nn.functional.softmax(next_token_logits, dim=-1)
    next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
    return next_tokens

if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--device",default='cuda')
    parser.add_argument("--model",required=True)
    parser.add_argument("--use_cache",action='store_true')
    parser.add_argument("--max_new_tokens",type=int,default=16_000)
    parser.add_argument("--output_path")
    args = parser.parse_args()

    prompt = 'hello' ## dummpy input

    config = AutoConfig.from_pretrained(args.model)
    config.max_position_embeddings = args.max_new_tokens+10
    model = AutoModelForCausalLM.from_config(config)
    model.eval()
    model = model.to(args.device)
    model = torch.compile(model)
    model_size = sum(p.numel() for p in model.parameters())
    tokenizer = AutoTokenizer.from_pretrained(args.model)
    tokenized_prompt = tokenizer(prompt, return_tensors="pt")
    tokenized_prompt = tokenized_prompt['input_ids'].to(args.device)            

    model_input = {
        "input_ids":tokenized_prompt,
        "use_cache":args.use_cache,
    }

    cache_name = "state" if args.model.startswith("RWKV") else "past_key_values"
    model_input[cache_name]=None

    os.makedirs(os.path.dirname(args.output_path),exist_ok=True)
    writer = open(args.output_path,'w')
    for tok_idx in range(args.max_new_tokens):
        with torch.no_grad():
            if args.use_cache and model_input[cache_name] is not None:model_input["input_ids"] = tokenized_prompt[:,-1:].to(args.device)
            else:model_input["input_ids"] = tokenized_prompt.to(args.device)
            with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], profile_memory=True, record_shapes=False) as prof:
                with record_function("model_inference"):
                    output = model.forward(**model_input)

        model_input[cache_name]=getattr(output,cache_name)
        next_tokens = sample(output)
        tokenized_prompt = torch.cat([tokenized_prompt.cpu(), next_tokens[:, None].cpu()], dim=-1)
        
        full_profile = next(event for event in prof.key_averages() if event.key == 'model_inference')
        writer.write(json.dumps({
            "model_name": args.model,
            "model_size": model_size,
            "token_id": tok_idx,
            "strategy": args.device,
            "cpu_time": full_profile.cpu_time,
            "cuda_time": full_profile.cuda_time,
            "cpu_memory_usage": full_profile.cpu_memory_usage,
            "cuda_memory_usage": full_profile.cuda_memory_usage,
            "self_cpu_memory_usage": full_profile.self_cpu_memory_usage,
            "self_cuda_memory_usage": full_profile.self_cuda_memory_usage,
            "max_memory_allocated":torch.cuda.max_memory_allocated(),
        })+'\n'
        )
        torch.cuda.empty_cache()

    writer.close()

"""
python benchmark_inference_time.py --model RWKV/rwkv-4-3b-pile --use_cache --output_path data/inference_time/rwkv-3b.jsonl
python benchmark_inference_time.py --model RWKV/rwkv-4-7b-pile --use_cache --output_path data/inference_time/rwkv-7b.jsonl
python benchmark_inference_time.py --model RWKV/rwkv-4-14b-pile --use_cache --output_path data/inference_time/rwkv-14b.jsonl
python benchmark_inference_time.py --model facebook/opt-2.7b --use_cache --output_path data/inference_time/opt-2.7b.jsonl
python benchmark_inference_time.py --model facebook/opt-6.7b --use_cache --output_path data/inference_time/opt-6.7b.jsonl
python benchmark_inference_time.py --model EleutherAI/pythia-2.8b --use_cache --output_path data/inference_time/pythia-2.8b.jsonl
python benchmark_inference_time.py --model EleutherAI/pythia-6.9b --use_cache --output_path data/inference_time/pythia-6.9b.jsonl
python benchmark_inference_time.py --model EleutherAI/gpt-neo-2.7B --use_cache --output_path data/inference_time/gpt-neo-2.7B.jsonl

############# Poltting Code ##############
import numpy as np
import json
def get_jsonl(f): return [json.loads(x) for x in open(f).readlines()]
import matplotlib.pyplot as plt
fig, (ax1,ax2,ax3) = plt.subplots(1, 3,figsize=(18, 4))

for model_name in [
    "rwkv-3b",
    # "rwkv-7b",
    # "rwkv-14b",
    "opt-2.7b",
    "gpt-neo-2.7B",
    "pythia-2.8b"
    ]:
    data = get_jsonl(f"data/inference_time/{model_name}.jsonl")
    cuda_time = [x['cuda_time'] for x in data]
    cumulative_time = np.cumsum(cuda_time)/(1000*1000)
    memory_usage = [x['max_memory_allocated']/(2**10)/(2**10)/(2**10) for x in data]
    ax1.plot([x/1000 for x in cuda_time][100:],label=model_name)
    ax2.plot(cumulative_time,label=model_name)
    ax3.plot(memory_usage,label=model_name)

ax1.set_xlabel("# Tokens")
ax1.set_ylabel("Time (ms) to generated the #-th token")
ax1.grid()
ax1.legend()
ax1.set_title("Single Token Generation Latency")

ax2.set_xlabel("# Tokens")
ax2.set_ylabel("Cumulative time (s) to generated the #-th token")
ax2.grid()
ax2.legend()
ax2.set_title("Cumulative Generation Latency")

ax3.set_xlabel("# Tokens")
ax3.set_ylabel("Memory usage (GB)")
ax3.grid()
ax3.legend()
ax3.set_title("Memory usage in Generation")
"""