File size: 5,566 Bytes
c50fe14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from torch.profiler import ProfilerActivity, profile, record_function
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from torch import nn
import torch
torch.set_float32_matmul_precision('high')
import json
from argparse import ArgumentParser
def sample(outputs):
next_token_logits = outputs.logits[:, -1, :]
probs = nn.functional.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
return next_tokens
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--device",default='cuda')
parser.add_argument("--model",required=True)
parser.add_argument("--use_cache",action='store_true')
parser.add_argument("--max_new_tokens",type=int,default=16_000)
parser.add_argument("--output_path")
args = parser.parse_args()
prompt = 'hello' ## dummpy input
config = AutoConfig.from_pretrained(args.model)
config.max_position_embeddings = args.max_new_tokens+10
model = AutoModelForCausalLM.from_config(config)
model.eval()
model = model.to(args.device)
model = torch.compile(model)
model_size = sum(p.numel() for p in model.parameters())
tokenizer = AutoTokenizer.from_pretrained(args.model)
tokenized_prompt = tokenizer(prompt, return_tensors="pt")
tokenized_prompt = tokenized_prompt['input_ids'].to(args.device)
model_input = {
"input_ids":tokenized_prompt,
"use_cache":args.use_cache,
}
cache_name = "state" if args.model.startswith("RWKV") else "past_key_values"
model_input[cache_name]=None
os.makedirs(os.path.dirname(args.output_path),exist_ok=True)
writer = open(args.output_path,'w')
for tok_idx in range(args.max_new_tokens):
with torch.no_grad():
if args.use_cache and model_input[cache_name] is not None:model_input["input_ids"] = tokenized_prompt[:,-1:].to(args.device)
else:model_input["input_ids"] = tokenized_prompt.to(args.device)
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], profile_memory=True, record_shapes=False) as prof:
with record_function("model_inference"):
output = model.forward(**model_input)
model_input[cache_name]=getattr(output,cache_name)
next_tokens = sample(output)
tokenized_prompt = torch.cat([tokenized_prompt.cpu(), next_tokens[:, None].cpu()], dim=-1)
full_profile = next(event for event in prof.key_averages() if event.key == 'model_inference')
writer.write(json.dumps({
"model_name": args.model,
"model_size": model_size,
"token_id": tok_idx,
"strategy": args.device,
"cpu_time": full_profile.cpu_time,
"cuda_time": full_profile.cuda_time,
"cpu_memory_usage": full_profile.cpu_memory_usage,
"cuda_memory_usage": full_profile.cuda_memory_usage,
"self_cpu_memory_usage": full_profile.self_cpu_memory_usage,
"self_cuda_memory_usage": full_profile.self_cuda_memory_usage,
"max_memory_allocated":torch.cuda.max_memory_allocated(),
})+'\n'
)
torch.cuda.empty_cache()
writer.close()
"""
python benchmark_inference_time.py --model RWKV/rwkv-4-3b-pile --use_cache --output_path data/inference_time/rwkv-3b.jsonl
python benchmark_inference_time.py --model RWKV/rwkv-4-7b-pile --use_cache --output_path data/inference_time/rwkv-7b.jsonl
python benchmark_inference_time.py --model RWKV/rwkv-4-14b-pile --use_cache --output_path data/inference_time/rwkv-14b.jsonl
python benchmark_inference_time.py --model facebook/opt-2.7b --use_cache --output_path data/inference_time/opt-2.7b.jsonl
python benchmark_inference_time.py --model facebook/opt-6.7b --use_cache --output_path data/inference_time/opt-6.7b.jsonl
python benchmark_inference_time.py --model EleutherAI/pythia-2.8b --use_cache --output_path data/inference_time/pythia-2.8b.jsonl
python benchmark_inference_time.py --model EleutherAI/pythia-6.9b --use_cache --output_path data/inference_time/pythia-6.9b.jsonl
python benchmark_inference_time.py --model EleutherAI/gpt-neo-2.7B --use_cache --output_path data/inference_time/gpt-neo-2.7B.jsonl
############# Poltting Code ##############
import numpy as np
import json
def get_jsonl(f): return [json.loads(x) for x in open(f).readlines()]
import matplotlib.pyplot as plt
fig, (ax1,ax2,ax3) = plt.subplots(1, 3,figsize=(18, 4))
for model_name in [
"rwkv-3b",
# "rwkv-7b",
# "rwkv-14b",
"opt-2.7b",
"gpt-neo-2.7B",
"pythia-2.8b"
]:
data = get_jsonl(f"data/inference_time/{model_name}.jsonl")
cuda_time = [x['cuda_time'] for x in data]
cumulative_time = np.cumsum(cuda_time)/(1000*1000)
memory_usage = [x['max_memory_allocated']/(2**10)/(2**10)/(2**10) for x in data]
ax1.plot([x/1000 for x in cuda_time][100:],label=model_name)
ax2.plot(cumulative_time,label=model_name)
ax3.plot(memory_usage,label=model_name)
ax1.set_xlabel("# Tokens")
ax1.set_ylabel("Time (ms) to generated the #-th token")
ax1.grid()
ax1.legend()
ax1.set_title("Single Token Generation Latency")
ax2.set_xlabel("# Tokens")
ax2.set_ylabel("Cumulative time (s) to generated the #-th token")
ax2.grid()
ax2.legend()
ax2.set_title("Cumulative Generation Latency")
ax3.set_xlabel("# Tokens")
ax3.set_ylabel("Memory usage (GB)")
ax3.grid()
ax3.legend()
ax3.set_title("Memory usage in Generation")
""" |