File size: 17,398 Bytes
c50fe14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import math
import torch
import torch.nn as nn

from torch.nn import functional as F


class LayerNorm(nn.Module):
    """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """

    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)


class RWKV_TimeMix_x051a(nn.Module):

    def __init__(self, config, layer_id):
        super().__init__()
        assert config.n_embd % config.n_head == 0

        self.head_size = config.n_embd // config.n_head
        self.n_head = config.n_head

        with torch.no_grad():
            ratio_0_to_1 = layer_id / (config.n_layer - 1)  # 0 to 1
            ratio_1_to_almost0 = 1.0 - (layer_id / config.n_layer)  # 1 to ~0
            ddd = torch.ones(1, 1, config.n_embd)
            for i in range(config.n_embd):
                ddd[0, 0, i] = i / config.n_embd

            self.time_maa_k = nn.Parameter(
                1.0 - torch.pow(ddd, ratio_1_to_almost0))
            self.time_maa_v = nn.Parameter(
                1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1))
            self.time_maa_r = nn.Parameter(
                1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
            self.time_maa_g = nn.Parameter(
                1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))

            decay_speed = torch.ones(self.n_head)
            for h in range(self.n_head):
                decay_speed[h] = -6 + 5 * \
                    (h / (self.n_head - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
            self.time_decay = nn.Parameter(decay_speed.unsqueeze(-1))

            tmp = torch.zeros(self.n_head)
            for h in range(self.n_head):
                tmp[h] = ratio_0_to_1 * (1 - (h / (self.n_head - 1)))
            self.time_faaaa = nn.Parameter(tmp.unsqueeze(-1))

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))

        self.receptance = nn.Linear(
            config.n_embd, config.n_embd, bias=config.bias)
        self.key = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.value = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.gate = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)

        self.output = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.ln_x = nn.GroupNorm(self.n_head, config.n_embd, eps=(1e-5)*64)

        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)
        H, N = self.n_head, self.head_size
        if T % 256 == 0:
            Q = 256
        elif T % 128 == 0:
            Q = 128
        else:
            Q = T
        assert T % Q == 0

        xx = self.time_shift(x) - x
        xk = x + xx * self.time_maa_k
        xv = x + xx * self.time_maa_v
        xr = x + xx * self.time_maa_r
        xg = x + xx * self.time_maa_g
        r = self.receptance(xr).view(B, T, H, N).transpose(1, 2)  # receptance
        k = self.key(xk).view(B, T, H, N).permute(0, 2, 3, 1)  # key
        v = self.value(xv).view(B, T, H, N).transpose(1, 2)  # value
        g = F.silu(self.gate(xg))  # extra gate

        w = torch.exp(-torch.exp(self.time_decay.float()))  # time_decay
        u = self.time_faaaa.float()  # time_first

        ws = w.pow(Q).view(1, H, 1, 1)

        ind = torch.arange(
            Q-1, -1, -1, device=r.device).unsqueeze(0).repeat(H, 1)
        w = w.repeat(1, Q).pow(ind)

        wk = w.view(1, H, 1, Q)
        wb = wk.transpose(-2, -1).flip(2)

        w = torch.cat([w[:, 1:], u], dim=1)
        w = F.pad(w, (0, Q))
        w = torch.tile(w, [Q])
        w = w[:, :-Q].view(-1, Q, 2*Q - 1)
        w = w[:, :, Q-1:].view(1, H, Q, Q)

        w = w.to(dtype=r.dtype)  # the decay matrix
        wk = wk.to(dtype=r.dtype)
        wb = wb.to(dtype=r.dtype)
        ws = ws.to(dtype=r.dtype)

        state = torch.zeros(B, H, N, N, device=r.device,
                            dtype=r.dtype)  # state
        y = torch.empty(B, H, T, N, device=r.device, dtype=r.dtype)  # output

        for i in range(T // Q):  # the rwkv-x051a operator
            rr = r[:, :, i*Q:i*Q+Q, :]
            kk = k[:, :, :, i*Q:i*Q+Q]
            vv = v[:, :, i*Q:i*Q+Q, :]
            y[:, :, i*Q:i*Q+Q, :] = ((rr @ kk) * w) @ vv + (rr @ state) * wb
            state = ws * state + (kk * wk) @ vv

        y = y.transpose(1, 2).contiguous().view(B * T, C)
        y = self.ln_x(y).view(B, T, C) * g

        # output projection
        y = self.dropout(self.output(y))
        return y


class RWKV_ChannelMix_x051a(nn.Module):

    def __init__(self, config, layer_id):
        super().__init__()

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        with torch.no_grad():
            ratio_1_to_almost0 = 1.0 - (layer_id / config.n_layer)
            ddd = torch.ones(1, 1, config.n_embd)
            for i in range(config.n_embd):
                ddd[0, 0, i] = i / config.n_embd
            self.time_maa_k = nn.Parameter(
                1.0 - torch.pow(ddd, ratio_1_to_almost0))
            self.time_maa_r = nn.Parameter(
                1.0 - torch.pow(ddd, ratio_1_to_almost0))

        self.key = nn.Linear(config.n_embd, 3 *
                             config.n_embd, bias=config.bias)
        self.value = nn.Linear(
            3 * config.n_embd, config.n_embd, bias=config.bias)
        self.receptance = nn.Linear(
            config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        xx = self.time_shift(x) - x
        xk = x + xx * self.time_maa_k
        xr = x + xx * self.time_maa_r

        x = self.key(xk)
        x = torch.relu(x) ** 2
        x = self.value(x)
        x = torch.sigmoid(self.receptance(xr)) * x
        x = self.dropout(x)
        return x


class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-8):
        super().__init__()
        self.scale = dim ** -0.5
        self.eps = eps

    def forward(self, x):
        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
        return x / (norm + self.eps)


class GroupedQAttention(nn.Module):
    def __init__(self, dim, num_heads, groups=4):
        super().__init__()
        self.num_heads = num_heads
        self.groups = groups

        self.qkvw = nn.Linear(dim, dim * 4, bias=False)
        self.out = nn.Linear(dim, dim, bias=False)

    def forward(self, x):
        batch, seq_len, dim = x.shape
        qkvw = self.qkvw(x)  # GENERATE
        qkvw_gropus = torch.chunk(qkvw, self.groups, dim=-1)  # GENERATE
        q, k, v, w = [t.chunk(self.groups, dim=-1) for t in qkvw_gropus]

        q, k, v, w = [
            torch.cat([qi, ki, vi, wi], dim=0)
            for qi, ki, vi, wi in zip(q, k, v, w)
        ]

        q, k, v = map(
            lambda t: t.view(batch * self.groups, self.num_heads, -1,
                             dim // self.num_heads // self.groups).transpose(1, 2),
            [q, k, v]
        )
        w = w.view(batch * self.groups, self.num_heads, -
                   1, dim // self.num_heads // self.groups)

        attn_output = (q @ k.transpose(-2, -1)) * \
            (dim // self.num_heads // self.groups) ** -0.5
        attn_output = attn_output.softmax(dim=-1)
        attn_output = (attn_output @ v).transpose(1,
                                                  2).reshape(batch, seq_len, dim)
        return self.out(attn_output * w.reshape(batch, seq_len, dim))


class SlidingWindowAttention(nn.Module):
    def __init__(self, dim, window_size, num_heads):
        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=False)
        self.proj = nn.Linear(dim, dim, bias=False)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.head_dim ** -0.5

        # Pad to multiple of window size
        padding = (self.window_size - N % self.window_size) % self.window_size
        q = F.pad(q, (0, 0, 0, padding))
        k = F.pad(k, (0, 0, 0, padding))
        v = F.pad(v, (0, 0, 0, padding))

        # Reshape to sliding windows
        q = q.reshape(B * self.num_heads, self.window_size, -1)
        k = k.reshape(B * self.num_heads, self.window_size, -1)
        v = v.reshape(B * self.num_heads, self.window_size, -1)

        attn = q @ k.transpose(-2, -1)
        attn = attn.softmax(dim=-1)
        attn = attn @ v

        attn = attn.reshape(B, self.num_heads, N + padding, self.head_dim)
        attn = attn[:, :, :N, :].permute(0, 2, 1, 3).reshape(B, N, C)
        return self.proj(attn)


class TinyMoE(nn.Module):
    def __init__(self, dim, num_experts, num_active_experts, expert_dim, dropout=0.0, expert_capacity_scale=1.0, aux_loss_weight=0.1):
        super().__init__()
        self.dim = dim
        self.num_experts = num_experts
        self.num_active_experts = num_active_experts
        self.expert_dim = expert_dim
        self.dropout = nn.Dropout(dropout)
        self.gate = nn.Linear(dim, num_experts)
        self.expert_capacity_scale = expert_capacity_scale
        self.scaled_expert_dim = int(expert_dim * self.expert_capacity_scale)
        self.experts = nn.ModuleList(
            [nn.Linear(dim, self.scaled_expert_dim) for _ in range(num_active_experts)])
        self.fc = nn.Linear(self.scaled_expert_dim, dim)

        # Auxiliary loss
        self.aux_loss_weight = aux_loss_weight
        self.expert_diversity_loss = nn.MSELoss()

    def forward(self, x):
        b, n, d = x.shape

        # Compute attention scores
        scores = self.gate(x).view(b, n, self.num_experts)
        scores = F.softmax(scores, dim=-1)

        # Apply dropout to the attention scores
        scores = self.dropout(scores)

        # Compute the weighted sum of expert outputs
        expert_outputs = torch.stack(
            [exp(x.view(b * n, d)) for exp in self.experts], dim=1)
        expert_outputs = expert_outputs.view(
            b, n, self.num_active_experts, self.scaled_expert_dim)
        weighted_outputs = (
            expert_outputs * scores[:, :, :self.num_active_experts].unsqueeze(-1)).sum(dim=2)

        # Apply the final linear layer
        output = self.fc(weighted_outputs)

        # Auxiliary loss: Expert diversity
        # (b, num_active_experts, scaled_expert_dim)
        expert_activations = expert_outputs.mean(dim=1)
        expert_diversity_loss = self.expert_diversity_loss(expert_activations.transpose(
            0, 1), torch.zeros_like(expert_activations.transpose(0, 1)))

        return output, expert_diversity_loss * self.aux_loss_weight

    def set_expert_capacity(self, expert_capacity_scale):
        self.expert_capacity_scale = expert_capacity_scale
        self.scaled_expert_dim = int(
            self.expert_dim * self.expert_capacity_scale)
        self.experts = nn.ModuleList([nn.Linear(
            self.dim, self.scaled_expert_dim) for _ in range(self.num_active_experts)])
        self.fc = nn.Linear(self.scaled_expert_dim, self.dim)


class Block(nn.Module):

    def __init__(self, config, layer_id):
        super().__init__()
        self.ln_1 = RMSNorm(config.n_embd)
        self.ln_2 = RMSNorm(config.n_embd)

        # stay in here because this is a core component
        self.tmix = RWKV_TimeMix_x051a(config, layer_id)

        # Add GroupedQAttention instance
        self.grouped_attn = GroupedQAttention(config.n_embd, config.n_head)

        # stay in here because this is a core component
        self.cmix = RWKV_ChannelMix_x051a(config, layer_id)

        self.sliding_attn = SlidingWindowAttention(
            config.n_embd, window_size=256, num_heads=config.n_head)

        self.moe = TinyMoE(config.dim, config.num_experts, config.num_active_experts,
                           config.expert_dim, config.dropout, expert_capacity_scale=1.2, aux_loss_weight=0.01)

    def forward(self, x):
        x = x + self.tmix(self.ln_1(x))
        x = x + self.cmix(self.ln_2(x))
        x = x + self.sliding_attn(x)  # Apply sliding window attention
        x = x + self.grouped_attn(self.tmix(x))  # Apply GroupedQAttention
        # x = x + self.moe(x)  # Apply TinyMoE
        moe_output, aux_loss = self.moe(x)
        x = x + moe_output
        return x


class GPT(nn.Module):

    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte=nn.Embedding(config.vocab_size, config.n_embd),
            wpe=nn.Embedding(config.block_size, config.n_embd),
            drop=nn.Dropout(config.dropout),
            h=nn.ModuleList([Block(config, i) for i in range(config.n_layer)]),
            ln_f=LayerNorm(config.n_embd, bias=config.bias),
        ))
        self.lm_head = nn.Linear(
            self.config.n_embd, self.config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight

        # init all weights
        self.apply(self._init_weights)

        # apply special scaled init to the residual projections, per GPT-2 paper
        for pn, p in self.named_parameters():
            if pn.endswith('tmix.output.weight'):
                torch.nn.init.normal_(
                    p, mean=0.0, std=0.02/math.sqrt(2 * self.config.n_layer))

        # report number of parameters
        print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))

    def get_num_params(self, non_embedding=True):
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding:
            n_params -= self.transformer.wpe.weight.numel()
        return n_params

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device)  # shape (t)

        # forward the GPT model itself
        # token embeddings of shape (b, t, n_embd)
        tok_emb = self.transformer.wte(idx)

        # position embeddings of shape (t, n_embd)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.lm_head(x)
            loss = F.cross_entropy(
                logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the lm_head on the very last position
            # note: using list [-1] to preserve the time dim
            logits = self.lm_head(x[:, [-1], :])
            loss = None

        return logits, loss

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, top_k=None):

        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            idx_cond = idx if idx.size(
                1) <= self.config.block_size else idx[:, -self.config.block_size:]
            # forward the model to get the logits for the index in the sequence
            logits, _ = self(idx_cond)
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :]
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx