File size: 17,398 Bytes
c50fe14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class LayerNorm(nn.Module):
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
class RWKV_TimeMix_x051a(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
assert config.n_embd % config.n_head == 0
self.head_size = config.n_embd // config.n_head
self.n_head = config.n_head
with torch.no_grad():
ratio_0_to_1 = layer_id / (config.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / config.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, config.n_embd)
for i in range(config.n_embd):
ddd[0, 0, i] = i / config.n_embd
self.time_maa_k = nn.Parameter(
1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.time_maa_v = nn.Parameter(
1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1))
self.time_maa_r = nn.Parameter(
1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_maa_g = nn.Parameter(
1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
decay_speed = torch.ones(self.n_head)
for h in range(self.n_head):
decay_speed[h] = -6 + 5 * \
(h / (self.n_head - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
self.time_decay = nn.Parameter(decay_speed.unsqueeze(-1))
tmp = torch.zeros(self.n_head)
for h in range(self.n_head):
tmp[h] = ratio_0_to_1 * (1 - (h / (self.n_head - 1)))
self.time_faaaa = nn.Parameter(tmp.unsqueeze(-1))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.receptance = nn.Linear(
config.n_embd, config.n_embd, bias=config.bias)
self.key = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.value = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.gate = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.output = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.ln_x = nn.GroupNorm(self.n_head, config.n_embd, eps=(1e-5)*64)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
H, N = self.n_head, self.head_size
if T % 256 == 0:
Q = 256
elif T % 128 == 0:
Q = 128
else:
Q = T
assert T % Q == 0
xx = self.time_shift(x) - x
xk = x + xx * self.time_maa_k
xv = x + xx * self.time_maa_v
xr = x + xx * self.time_maa_r
xg = x + xx * self.time_maa_g
r = self.receptance(xr).view(B, T, H, N).transpose(1, 2) # receptance
k = self.key(xk).view(B, T, H, N).permute(0, 2, 3, 1) # key
v = self.value(xv).view(B, T, H, N).transpose(1, 2) # value
g = F.silu(self.gate(xg)) # extra gate
w = torch.exp(-torch.exp(self.time_decay.float())) # time_decay
u = self.time_faaaa.float() # time_first
ws = w.pow(Q).view(1, H, 1, 1)
ind = torch.arange(
Q-1, -1, -1, device=r.device).unsqueeze(0).repeat(H, 1)
w = w.repeat(1, Q).pow(ind)
wk = w.view(1, H, 1, Q)
wb = wk.transpose(-2, -1).flip(2)
w = torch.cat([w[:, 1:], u], dim=1)
w = F.pad(w, (0, Q))
w = torch.tile(w, [Q])
w = w[:, :-Q].view(-1, Q, 2*Q - 1)
w = w[:, :, Q-1:].view(1, H, Q, Q)
w = w.to(dtype=r.dtype) # the decay matrix
wk = wk.to(dtype=r.dtype)
wb = wb.to(dtype=r.dtype)
ws = ws.to(dtype=r.dtype)
state = torch.zeros(B, H, N, N, device=r.device,
dtype=r.dtype) # state
y = torch.empty(B, H, T, N, device=r.device, dtype=r.dtype) # output
for i in range(T // Q): # the rwkv-x051a operator
rr = r[:, :, i*Q:i*Q+Q, :]
kk = k[:, :, :, i*Q:i*Q+Q]
vv = v[:, :, i*Q:i*Q+Q, :]
y[:, :, i*Q:i*Q+Q, :] = ((rr @ kk) * w) @ vv + (rr @ state) * wb
state = ws * state + (kk * wk) @ vv
y = y.transpose(1, 2).contiguous().view(B * T, C)
y = self.ln_x(y).view(B, T, C) * g
# output projection
y = self.dropout(self.output(y))
return y
class RWKV_ChannelMix_x051a(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad():
ratio_1_to_almost0 = 1.0 - (layer_id / config.n_layer)
ddd = torch.ones(1, 1, config.n_embd)
for i in range(config.n_embd):
ddd[0, 0, i] = i / config.n_embd
self.time_maa_k = nn.Parameter(
1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.time_maa_r = nn.Parameter(
1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.key = nn.Linear(config.n_embd, 3 *
config.n_embd, bias=config.bias)
self.value = nn.Linear(
3 * config.n_embd, config.n_embd, bias=config.bias)
self.receptance = nn.Linear(
config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
xx = self.time_shift(x) - x
xk = x + xx * self.time_maa_k
xr = x + xx * self.time_maa_r
x = self.key(xk)
x = torch.relu(x) ** 2
x = self.value(x)
x = torch.sigmoid(self.receptance(xr)) * x
x = self.dropout(x)
return x
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
def forward(self, x):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / (norm + self.eps)
class GroupedQAttention(nn.Module):
def __init__(self, dim, num_heads, groups=4):
super().__init__()
self.num_heads = num_heads
self.groups = groups
self.qkvw = nn.Linear(dim, dim * 4, bias=False)
self.out = nn.Linear(dim, dim, bias=False)
def forward(self, x):
batch, seq_len, dim = x.shape
qkvw = self.qkvw(x) # GENERATE
qkvw_gropus = torch.chunk(qkvw, self.groups, dim=-1) # GENERATE
q, k, v, w = [t.chunk(self.groups, dim=-1) for t in qkvw_gropus]
q, k, v, w = [
torch.cat([qi, ki, vi, wi], dim=0)
for qi, ki, vi, wi in zip(q, k, v, w)
]
q, k, v = map(
lambda t: t.view(batch * self.groups, self.num_heads, -1,
dim // self.num_heads // self.groups).transpose(1, 2),
[q, k, v]
)
w = w.view(batch * self.groups, self.num_heads, -
1, dim // self.num_heads // self.groups)
attn_output = (q @ k.transpose(-2, -1)) * \
(dim // self.num_heads // self.groups) ** -0.5
attn_output = attn_output.softmax(dim=-1)
attn_output = (attn_output @ v).transpose(1,
2).reshape(batch, seq_len, dim)
return self.out(attn_output * w.reshape(batch, seq_len, dim))
class SlidingWindowAttention(nn.Module):
def __init__(self, dim, window_size, num_heads):
super().__init__()
self.dim = dim
self.window_size = window_size
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.head_dim ** -0.5
# Pad to multiple of window size
padding = (self.window_size - N % self.window_size) % self.window_size
q = F.pad(q, (0, 0, 0, padding))
k = F.pad(k, (0, 0, 0, padding))
v = F.pad(v, (0, 0, 0, padding))
# Reshape to sliding windows
q = q.reshape(B * self.num_heads, self.window_size, -1)
k = k.reshape(B * self.num_heads, self.window_size, -1)
v = v.reshape(B * self.num_heads, self.window_size, -1)
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = attn @ v
attn = attn.reshape(B, self.num_heads, N + padding, self.head_dim)
attn = attn[:, :, :N, :].permute(0, 2, 1, 3).reshape(B, N, C)
return self.proj(attn)
class TinyMoE(nn.Module):
def __init__(self, dim, num_experts, num_active_experts, expert_dim, dropout=0.0, expert_capacity_scale=1.0, aux_loss_weight=0.1):
super().__init__()
self.dim = dim
self.num_experts = num_experts
self.num_active_experts = num_active_experts
self.expert_dim = expert_dim
self.dropout = nn.Dropout(dropout)
self.gate = nn.Linear(dim, num_experts)
self.expert_capacity_scale = expert_capacity_scale
self.scaled_expert_dim = int(expert_dim * self.expert_capacity_scale)
self.experts = nn.ModuleList(
[nn.Linear(dim, self.scaled_expert_dim) for _ in range(num_active_experts)])
self.fc = nn.Linear(self.scaled_expert_dim, dim)
# Auxiliary loss
self.aux_loss_weight = aux_loss_weight
self.expert_diversity_loss = nn.MSELoss()
def forward(self, x):
b, n, d = x.shape
# Compute attention scores
scores = self.gate(x).view(b, n, self.num_experts)
scores = F.softmax(scores, dim=-1)
# Apply dropout to the attention scores
scores = self.dropout(scores)
# Compute the weighted sum of expert outputs
expert_outputs = torch.stack(
[exp(x.view(b * n, d)) for exp in self.experts], dim=1)
expert_outputs = expert_outputs.view(
b, n, self.num_active_experts, self.scaled_expert_dim)
weighted_outputs = (
expert_outputs * scores[:, :, :self.num_active_experts].unsqueeze(-1)).sum(dim=2)
# Apply the final linear layer
output = self.fc(weighted_outputs)
# Auxiliary loss: Expert diversity
# (b, num_active_experts, scaled_expert_dim)
expert_activations = expert_outputs.mean(dim=1)
expert_diversity_loss = self.expert_diversity_loss(expert_activations.transpose(
0, 1), torch.zeros_like(expert_activations.transpose(0, 1)))
return output, expert_diversity_loss * self.aux_loss_weight
def set_expert_capacity(self, expert_capacity_scale):
self.expert_capacity_scale = expert_capacity_scale
self.scaled_expert_dim = int(
self.expert_dim * self.expert_capacity_scale)
self.experts = nn.ModuleList([nn.Linear(
self.dim, self.scaled_expert_dim) for _ in range(self.num_active_experts)])
self.fc = nn.Linear(self.scaled_expert_dim, self.dim)
class Block(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.ln_1 = RMSNorm(config.n_embd)
self.ln_2 = RMSNorm(config.n_embd)
# stay in here because this is a core component
self.tmix = RWKV_TimeMix_x051a(config, layer_id)
# Add GroupedQAttention instance
self.grouped_attn = GroupedQAttention(config.n_embd, config.n_head)
# stay in here because this is a core component
self.cmix = RWKV_ChannelMix_x051a(config, layer_id)
self.sliding_attn = SlidingWindowAttention(
config.n_embd, window_size=256, num_heads=config.n_head)
self.moe = TinyMoE(config.dim, config.num_experts, config.num_active_experts,
config.expert_dim, config.dropout, expert_capacity_scale=1.2, aux_loss_weight=0.01)
def forward(self, x):
x = x + self.tmix(self.ln_1(x))
x = x + self.cmix(self.ln_2(x))
x = x + self.sliding_attn(x) # Apply sliding window attention
x = x + self.grouped_attn(self.tmix(x)) # Apply GroupedQAttention
# x = x + self.moe(x) # Apply TinyMoE
moe_output, aux_loss = self.moe(x)
x = x + moe_output
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([Block(config, i) for i in range(config.n_layer)]),
ln_f=LayerNorm(config.n_embd, bias=config.bias),
))
self.lm_head = nn.Linear(
self.config.n_embd, self.config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('tmix.output.weight'):
torch.nn.init.normal_(
p, mean=0.0, std=0.02/math.sqrt(2 * self.config.n_layer))
# report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
def get_num_params(self, non_embedding=True):
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
# forward the GPT model itself
# token embeddings of shape (b, t, n_embd)
tok_emb = self.transformer.wte(idx)
# position embeddings of shape (t, n_embd)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
# note: using list [-1] to preserve the time dim
logits = self.lm_head(x[:, [-1], :])
loss = None
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens, top_k=None):
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(
1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :]
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
|