AntIIITD's picture
update model card README.md
3415ffd
|
raw
history blame
2.13 kB
metadata
license: cc-by-4.0
tags:
  - generated_from_trainer
datasets:
  - wmt16
metrics:
  - bleu
model-index:
  - name: opus-mt-en-de-finetuned-en-to-de
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: wmt16
          type: wmt16
          config: de-en
          split: validation
          args: de-en
        metrics:
          - name: Bleu
            type: bleu
            value: 30.529

opus-mt-en-de-finetuned-en-to-de

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-de on the wmt16 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2849
  • Bleu: 30.529
  • Rougelsum: 0.5587
  • Gen Len: 27.0521

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Rougelsum Gen Len
1.5584 1.0 12500 1.2921 30.5519 0.5601 27.0549
1.5649 2.0 25000 1.2877 30.578 0.5591 27.0415
1.5686 3.0 37500 1.2859 30.5509 0.5591 27.0401
1.5507 4.0 50000 1.2851 30.5396 0.5589 27.0526
1.5532 5.0 62500 1.2849 30.529 0.5587 27.0521

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3