|
--- |
|
license: cc-by-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wmt16 |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-en-de-finetuned-en-to-de |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: wmt16 |
|
type: wmt16 |
|
config: de-en |
|
split: validation |
|
args: de-en |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 30.529 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-de-finetuned-en-to-de |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the wmt16 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2849 |
|
- Bleu: 30.529 |
|
- Rougelsum: 0.5587 |
|
- Gen Len: 27.0521 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:|:-------:| |
|
| 1.5584 | 1.0 | 12500 | 1.2921 | 30.5519 | 0.5601 | 27.0549 | |
|
| 1.5649 | 2.0 | 25000 | 1.2877 | 30.578 | 0.5591 | 27.0415 | |
|
| 1.5686 | 3.0 | 37500 | 1.2859 | 30.5509 | 0.5591 | 27.0401 | |
|
| 1.5507 | 4.0 | 50000 | 1.2851 | 30.5396 | 0.5589 | 27.0526 | |
|
| 1.5532 | 5.0 | 62500 | 1.2849 | 30.529 | 0.5587 | 27.0521 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|