w2v-bert-Marathi-large
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2714
- Wer: 0.1698
- Cer: 0.0531
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.8852 | 0.5882 | 300 | 0.7826 | 0.4911 | 0.1647 |
0.6243 | 1.1765 | 600 | 0.6280 | 0.3920 | 0.1351 |
0.4901 | 1.7647 | 900 | 0.4369 | 0.3101 | 0.0986 |
0.355 | 2.3529 | 1200 | 0.3922 | 0.2658 | 0.0849 |
0.2943 | 2.9412 | 1500 | 0.3400 | 0.2371 | 0.0753 |
0.2177 | 3.5294 | 1800 | 0.3041 | 0.2080 | 0.0646 |
0.1779 | 4.1176 | 2100 | 0.2906 | 0.1954 | 0.0608 |
0.1299 | 4.7059 | 2400 | 0.2904 | 0.1779 | 0.0560 |
0.0929 | 5.2941 | 2700 | 0.2885 | 0.1727 | 0.0537 |
0.0729 | 5.8824 | 3000 | 0.2714 | 0.1698 | 0.0531 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Anujgr8/w2v-bert-Marathi-large
Base model
facebook/w2v-bert-2.0