robust-xlm2 / README.md
Anwaarma's picture
End of training
e108655 verified
|
raw
history blame
4.2 kB
metadata
base_model: Anwaarma/Improved-xlm-attempt2
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: robust-xlm2
    results: []

robust-xlm2

This model is a fine-tuned version of Anwaarma/Improved-xlm-attempt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2054
  • Accuracy: 0.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0546 50 0.2327 0.9
No log 0.1092 100 0.2348 0.92
No log 0.1638 150 0.3075 0.9
No log 0.2183 200 0.2929 0.9
No log 0.2729 250 0.3723 0.89
No log 0.3275 300 0.2431 0.9
No log 0.3821 350 0.2377 0.91
No log 0.4367 400 0.2088 0.91
No log 0.4913 450 0.3995 0.89
0.2747 0.5459 500 0.2175 0.91
0.2747 0.6004 550 0.2226 0.93
0.2747 0.6550 600 0.2073 0.9
0.2747 0.7096 650 0.2741 0.9
0.2747 0.7642 700 0.2444 0.9
0.2747 0.8188 750 0.3467 0.9
0.2747 0.8734 800 0.2255 0.92
0.2747 0.9279 850 0.2496 0.9
0.2747 0.9825 900 0.3061 0.91
0.2747 1.0371 950 0.2751 0.92
0.2371 1.0917 1000 0.2757 0.93
0.2371 1.1463 1050 0.2745 0.9
0.2371 1.2009 1100 0.2469 0.94
0.2371 1.2555 1150 0.2018 0.92
0.2371 1.3100 1200 0.2179 0.94
0.2371 1.3646 1250 0.3163 0.92
0.2371 1.4192 1300 0.2712 0.92
0.2371 1.4738 1350 0.1603 0.95
0.2371 1.5284 1400 0.2201 0.94
0.2371 1.5830 1450 0.1814 0.95
0.1934 1.6376 1500 0.3111 0.91
0.1934 1.6921 1550 0.2185 0.95
0.1934 1.7467 1600 0.3108 0.93
0.1934 1.8013 1650 0.1857 0.92
0.1934 1.8559 1700 0.1940 0.93
0.1934 1.9105 1750 0.2189 0.93
0.1934 1.9651 1800 0.2018 0.94
0.1934 2.0197 1850 0.1617 0.94
0.1934 2.0742 1900 0.2025 0.94
0.1934 2.1288 1950 0.2668 0.93
0.1773 2.1834 2000 0.2049 0.94
0.1773 2.2380 2050 0.2101 0.96
0.1773 2.2926 2100 0.2709 0.92
0.1773 2.3472 2150 0.2168 0.92
0.1773 2.4017 2200 0.3266 0.91
0.1773 2.4563 2250 0.3344 0.92
0.1773 2.5109 2300 0.2054 0.94

Framework versions

  • Transformers 4.42.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1