|
--- |
|
license: mit |
|
base_model: Aravindan/gpt2out |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: gpt2coder-8epochs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2coder-8epochs |
|
|
|
This model is a fine-tuned version of [Aravindan/gpt2out](https://huggingface.co/Aravindan/gpt2out) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9270 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| No log | 0.9810 | 31 | 3.2508 | |
|
| No log | 1.9937 | 63 | 2.6920 | |
|
| No log | 2.9747 | 94 | 2.3769 | |
|
| No log | 3.9873 | 126 | 2.1444 | |
|
| No log | 5.0 | 158 | 1.9673 | |
|
| No log | 5.9810 | 189 | 1.8320 | |
|
| No log | 6.9937 | 221 | 1.7097 | |
|
| No log | 7.9747 | 252 | 1.6159 | |
|
| No log | 8.9873 | 284 | 1.5231 | |
|
| No log | 10.0 | 316 | 1.4535 | |
|
| No log | 10.9810 | 347 | 1.3788 | |
|
| No log | 11.9937 | 379 | 1.3109 | |
|
| No log | 12.9747 | 410 | 1.2496 | |
|
| No log | 13.9873 | 442 | 1.1989 | |
|
| No log | 14.9810 | 465 | 1.1647 | |
|
| No log | 15.9937 | 497 | 1.1208 | |
|
| 1.3856 | 16.9747 | 528 | 1.0841 | |
|
| 1.3856 | 17.9873 | 560 | 1.0464 | |
|
| 1.3856 | 19.0 | 592 | 1.0180 | |
|
| 1.3856 | 19.9810 | 623 | 0.9928 | |
|
| 1.3856 | 20.9937 | 655 | 0.9689 | |
|
| 1.3856 | 21.9747 | 686 | 0.9517 | |
|
| 1.3856 | 22.9873 | 718 | 0.9390 | |
|
| 1.3856 | 24.0 | 750 | 0.9298 | |
|
| 1.3856 | 24.7911 | 775 | 0.9270 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|