|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: Aravindan/gpt2out |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: output_dir |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# output_dir |
|
|
|
This model is a fine-tuned version of [Aravindan/gpt2out](https://huggingface.co/Aravindan/gpt2out) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9619 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.6318 | 0.0147 | 30 | 2.4202 | |
|
| 2.5147 | 0.0294 | 60 | 2.3425 | |
|
| 2.4599 | 0.0440 | 90 | 2.2838 | |
|
| 2.4009 | 0.0587 | 120 | 2.2386 | |
|
| 2.394 | 0.0734 | 150 | 2.1971 | |
|
| 2.3459 | 0.0881 | 180 | 2.1614 | |
|
| 2.3057 | 0.1027 | 210 | 2.1324 | |
|
| 2.3085 | 0.1174 | 240 | 2.1076 | |
|
| 2.2675 | 0.1321 | 270 | 2.0891 | |
|
| 2.2348 | 0.1468 | 300 | 2.0716 | |
|
| 2.2167 | 0.1614 | 330 | 2.0594 | |
|
| 2.1827 | 0.1761 | 360 | 2.0481 | |
|
| 2.2049 | 0.1908 | 390 | 2.0390 | |
|
| 2.1803 | 0.2055 | 420 | 2.0303 | |
|
| 2.1709 | 0.2201 | 450 | 2.0250 | |
|
| 2.1915 | 0.2348 | 480 | 2.0183 | |
|
| 2.1583 | 0.2495 | 510 | 2.0120 | |
|
| 2.168 | 0.2642 | 540 | 2.0072 | |
|
| 2.1678 | 0.2788 | 570 | 2.0026 | |
|
| 2.1545 | 0.2935 | 600 | 1.9988 | |
|
| 2.1561 | 0.3082 | 630 | 1.9941 | |
|
| 2.1442 | 0.3229 | 660 | 1.9913 | |
|
| 2.1393 | 0.3375 | 690 | 1.9867 | |
|
| 2.1489 | 0.3522 | 720 | 1.9834 | |
|
| 2.1304 | 0.3669 | 750 | 1.9814 | |
|
| 2.1175 | 0.3816 | 780 | 1.9783 | |
|
| 2.113 | 0.3962 | 810 | 1.9753 | |
|
| 2.1025 | 0.4109 | 840 | 1.9729 | |
|
| 2.1181 | 0.4256 | 870 | 1.9711 | |
|
| 2.0947 | 0.4403 | 900 | 1.9688 | |
|
| 2.0868 | 0.4549 | 930 | 1.9665 | |
|
| 2.1061 | 0.4696 | 960 | 1.9638 | |
|
| 2.1096 | 0.4843 | 990 | 1.9619 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |