Edit model card

ClasificadorV2

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1411
  • Accuracy: 0.5708
  • Off By One Accuracy: 0.9434
  • F1: 0.5724
  • Recall: 0.5708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 50
  • eval_batch_size: 50
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Off By One Accuracy F1 Recall
1.2177 0.3333 500 1.0309 0.5426 0.93 0.5414 0.5426
1.011 0.6667 1000 0.9836 0.565 0.9336 0.5485 0.565
0.9833 1.0 1500 0.9664 0.5752 0.9448 0.5704 0.5752
0.9004 1.3333 2000 0.9566 0.5728 0.9476 0.5743 0.5728
0.8974 1.6667 2500 0.9583 0.5782 0.9472 0.5784 0.5782
0.8912 2.0 3000 0.9480 0.5816 0.9498 0.5768 0.5816
0.7935 2.3333 3500 0.9768 0.582 0.9472 0.5800 0.582
0.7898 2.6667 4000 0.9831 0.5716 0.9426 0.5715 0.5716
0.7801 3.0 4500 0.9969 0.5736 0.9514 0.5759 0.5736
0.6714 3.3333 5000 1.0782 0.5826 0.9392 0.5795 0.5826
0.6783 3.6667 5500 1.0672 0.5724 0.9456 0.5752 0.5724
0.6764 4.0 6000 1.0762 0.567 0.9458 0.5708 0.567
0.5986 4.3333 6500 1.1349 0.5698 0.9412 0.5684 0.5698
0.5887 4.6667 7000 1.1335 0.5706 0.9398 0.5716 0.5706
0.5798 5.0 7500 1.1411 0.5708 0.9434 0.5724 0.5708

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Armandodelca/ClasificadorV2

Finetuned
(79)
this model