|
---
|
|
base_model: google/gemma-7b-it
|
|
datasets:
|
|
- generator
|
|
library_name: peft
|
|
license: gemma
|
|
tags:
|
|
- trl
|
|
- sft
|
|
- generated_from_trainer
|
|
model-index:
|
|
- name: ERC_SUMMARY_gemma_peft
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/gladys-vimalan-anna-university/ERC_PEFT_gemma/runs/ctai1xg2) |
|
# ERC_SUMMARY_gemma_peft |
|
|
|
This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the ArunaMak/ERC_summary dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5364 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 4.3768 | 0.9921 | 94 | 4.8155 | |
|
| 1.6402 | 1.9947 | 189 | 1.6594 | |
|
| 1.3945 | 2.9974 | 284 | 1.5666 | |
|
| 1.3478 | 4.0 | 379 | 1.5460 | |
|
| 1.3085 | 4.9921 | 473 | 1.5388 | |
|
| 1.1856 | 5.9525 | 564 | 1.5364 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.43.0.dev0 |
|
- Pytorch 2.3.1+cu118 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |