File size: 2,813 Bytes
4d8cce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord
type: cord
args: cord
metrics:
- name: Precision
type: precision
value: 0.9174649963154016
- name: Recall
type: recall
value: 0.9318862275449101
- name: F1
type: f1
value: 0.9246193835870776
- name: Accuracy
type: accuracy
value: 0.9405772495755518
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2834
- Precision: 0.9175
- Recall: 0.9319
- F1: 0.9246
- Accuracy: 0.9406
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 4.17 | 250 | 1.0175 | 0.7358 | 0.7882 | 0.7611 | 0.8014 |
| 1.406 | 8.33 | 500 | 0.5646 | 0.8444 | 0.8735 | 0.8587 | 0.8671 |
| 1.406 | 12.5 | 750 | 0.3943 | 0.8950 | 0.9184 | 0.9065 | 0.9189 |
| 0.3467 | 16.67 | 1000 | 0.3379 | 0.9138 | 0.9289 | 0.9213 | 0.9291 |
| 0.3467 | 20.83 | 1250 | 0.2842 | 0.9189 | 0.9334 | 0.9261 | 0.9419 |
| 0.1484 | 25.0 | 1500 | 0.2822 | 0.9233 | 0.9371 | 0.9302 | 0.9427 |
| 0.1484 | 29.17 | 1750 | 0.2906 | 0.9168 | 0.9319 | 0.9243 | 0.9372 |
| 0.0825 | 33.33 | 2000 | 0.2922 | 0.9183 | 0.9334 | 0.9258 | 0.9410 |
| 0.0825 | 37.5 | 2250 | 0.2842 | 0.9154 | 0.9319 | 0.9236 | 0.9397 |
| 0.0596 | 41.67 | 2500 | 0.2834 | 0.9175 | 0.9319 | 0.9246 | 0.9406 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|