Augusto777's picture
End of training
f38dfb8 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-OT-alt
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9032258064516129

beit-base-patch16-224-OT-alt

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4274
  • Accuracy: 0.9032

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.91 5 1.7093 0.1774
1.7744 2.0 11 1.6178 0.1774
1.7744 2.91 16 1.4730 0.1774
1.5823 4.0 22 1.2754 0.1774
1.5823 4.91 27 1.1455 0.5645
1.27 6.0 33 1.0147 0.6290
1.27 6.91 38 0.9790 0.5484
1.079 8.0 44 1.0474 0.4516
1.079 8.91 49 0.8796 0.7581
1.005 10.0 55 0.7759 0.7742
0.8479 10.91 60 0.7421 0.8226
0.8479 12.0 66 0.6760 0.8548
0.7695 12.91 71 0.5933 0.8387
0.7695 14.0 77 0.6372 0.7742
0.6591 14.91 82 0.5653 0.8387
0.6591 16.0 88 0.4950 0.8710
0.5675 16.91 93 0.5040 0.8226
0.5675 18.0 99 0.4274 0.9032
0.5134 18.91 104 0.4617 0.8548
0.4418 20.0 110 0.4245 0.8871
0.4418 20.91 115 0.4922 0.8387
0.402 22.0 121 0.5112 0.8226
0.402 22.91 126 0.4696 0.8548
0.4039 24.0 132 0.4014 0.8710
0.4039 24.91 137 0.5006 0.8226
0.4216 26.0 143 0.5351 0.8548
0.4216 26.91 148 0.5203 0.8548
0.3593 28.0 154 0.4082 0.8548
0.3593 28.91 159 0.4017 0.8710
0.3638 30.0 165 0.4068 0.8871
0.3509 30.91 170 0.3991 0.8871
0.3509 32.0 176 0.3965 0.8710
0.3426 32.91 181 0.3921 0.8710
0.3426 34.0 187 0.3998 0.8710
0.3253 34.91 192 0.4102 0.8871
0.3253 36.0 198 0.4081 0.8871
0.3085 36.36 200 0.4083 0.8871

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0