metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-OT-alt
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9032258064516129
beit-base-patch16-224-OT-alt
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4274
- Accuracy: 0.9032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.91 | 5 | 1.7093 | 0.1774 |
1.7744 | 2.0 | 11 | 1.6178 | 0.1774 |
1.7744 | 2.91 | 16 | 1.4730 | 0.1774 |
1.5823 | 4.0 | 22 | 1.2754 | 0.1774 |
1.5823 | 4.91 | 27 | 1.1455 | 0.5645 |
1.27 | 6.0 | 33 | 1.0147 | 0.6290 |
1.27 | 6.91 | 38 | 0.9790 | 0.5484 |
1.079 | 8.0 | 44 | 1.0474 | 0.4516 |
1.079 | 8.91 | 49 | 0.8796 | 0.7581 |
1.005 | 10.0 | 55 | 0.7759 | 0.7742 |
0.8479 | 10.91 | 60 | 0.7421 | 0.8226 |
0.8479 | 12.0 | 66 | 0.6760 | 0.8548 |
0.7695 | 12.91 | 71 | 0.5933 | 0.8387 |
0.7695 | 14.0 | 77 | 0.6372 | 0.7742 |
0.6591 | 14.91 | 82 | 0.5653 | 0.8387 |
0.6591 | 16.0 | 88 | 0.4950 | 0.8710 |
0.5675 | 16.91 | 93 | 0.5040 | 0.8226 |
0.5675 | 18.0 | 99 | 0.4274 | 0.9032 |
0.5134 | 18.91 | 104 | 0.4617 | 0.8548 |
0.4418 | 20.0 | 110 | 0.4245 | 0.8871 |
0.4418 | 20.91 | 115 | 0.4922 | 0.8387 |
0.402 | 22.0 | 121 | 0.5112 | 0.8226 |
0.402 | 22.91 | 126 | 0.4696 | 0.8548 |
0.4039 | 24.0 | 132 | 0.4014 | 0.8710 |
0.4039 | 24.91 | 137 | 0.5006 | 0.8226 |
0.4216 | 26.0 | 143 | 0.5351 | 0.8548 |
0.4216 | 26.91 | 148 | 0.5203 | 0.8548 |
0.3593 | 28.0 | 154 | 0.4082 | 0.8548 |
0.3593 | 28.91 | 159 | 0.4017 | 0.8710 |
0.3638 | 30.0 | 165 | 0.4068 | 0.8871 |
0.3509 | 30.91 | 170 | 0.3991 | 0.8871 |
0.3509 | 32.0 | 176 | 0.3965 | 0.8710 |
0.3426 | 32.91 | 181 | 0.3921 | 0.8710 |
0.3426 | 34.0 | 187 | 0.3998 | 0.8710 |
0.3253 | 34.91 | 192 | 0.4102 | 0.8871 |
0.3253 | 36.0 | 198 | 0.4081 | 0.8871 |
0.3085 | 36.36 | 200 | 0.4083 | 0.8871 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0