BAAI
/

Bunny-Llama-3-8B-V / README.md
BoyaWu10's picture
Update
ca14d76 verified
|
raw
history blame
3.24 kB
metadata
inference: false
license: apache-2.0

Model Card

Logo

๐Ÿ“– Technical report | ๐Ÿ  Code | ๐Ÿฐ 3B Demo | ๐Ÿฐ 8B Demo

This is Bunny-Llama-3-8B-V.

Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2 and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.

We provide Bunny-Llama-3-8B-V, which is built upon SigLIP and Llama-3-8B. More details about this model can be found in GitHub.

MME P^{\text{P}} MME C^{\text{C}} MMB T/D^{\text{T/D}} SEED(-IMG) MMMU V/T^{\text{V/T}} VQA v2^{\text{v2}} GQA SQA I^{\text{I}} POPE
Bunny-Llama-3-8B-V 1592.2 335.0 76.2/75.6 66.0(73.3) 39.7/36.8 82.5 64.4 75.7 87.6

Quickstart

Here we show a code snippet to show you how to use the model with transformers.

Before running the snippet, you need to install the following dependencies:

pip install torch transformers accelerate pillow
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')

# set device
torch.set_default_device('cpu')  # or 'cuda'

# create model
model = AutoModelForCausalLM.from_pretrained(
    'BAAI/Bunny-Llama-3-8B-V',
    torch_dtype=torch.float16,
    device_map='auto',
    trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
    'BAAI/Bunny-Llama-3-8B-V',
    trust_remote_code=True)

# text prompt
prompt = 'Why is the image funny?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0)

# image, sample images can be found in images folder
image = Image.open('example_2.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)

# generate
output_ids = model.generate(
    input_ids,
    images=image_tensor,
    max_new_tokens=100,
    use_cache=True)[0]

print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())