BAAI
/

bge-large-zh / README.md
Shitao's picture
Update README.md
65a3d2d
|
raw
history blame
5.3 kB

baai-general-embedding-large-zh-instruction

Map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. It also can be used in vector databases for LLMs. For more details please refer to our GitHub: FlagEmbedding

Model List

Model Language Description query instruction for retrieval
BAAI/baai-general-embedding-large-en-instruction English rank 1st in MTEB leaderboard Represent this sentence for searching relevant passages:
BAAI/baai-general-embedding-large-zh-instruction Chinese rank 1st in C-MTEB bechmark 为这个句子生成表示以用于检索相关文章:
BAAI/baai-general-embedding-large-zh Chinese rank 2nd in C-MTEB bechmark --

Evaluation Results

  • C-MTEB:
    We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. More details and evaluation scripts see evaluation.
Model Embedding dimension Avg Retrieval STS PairClassification Classification Reranking Clustering
baai-general-embedding-large-zh-instruction 1024 63.84 71.53 53.23 78.94 72.26 62.33 48.39
baai-general-embedding-large-zh 1024 63.62 70.55 50.98 76.77 72.49 65.63 50.01
m3e-base 768 57.10 56.91 48.15 63.99 70.28 59.34 47.68
m3e-large 1024 57.05 54.75 48.64 64.3 71.22 59.66 48.88
text-embedding-ada-002(OpenAI) 1536 53.02 52.0 40.61 69.56 67.38 54.28 45.68
luotuo 1024 49.37 44.4 39.41 66.62 65.29 49.25 44.39
text2vec 768 47.63 38.79 41.71 67.41 65.18 49.45 37.66
text2vec-large 1024 47.36 41.94 41.98 70.86 63.42 49.16 30.02

Usage

Sentence-Transformers

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["样例数据-1", "样例数据-2"]
model = SentenceTransformer('BAAI/baai-general-embedding-large-zh-instruction')
embeddings = model.encode(sentences, normalize_embeddings=True)
print(embeddings)

HuggingFace Transformers

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/baai-general-embedding-large-zh-instruction')
model = AutoModel.from_pretrained('BAAI/baai-general-embedding-large-zh-instruction')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
    # Perform pooling. In this case, cls pooling.
    sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)

Retrieval Task

For retrieval task, when you use the model whose name ends with -instruction each query should start with a instruction.

from sentence_transformers import SentenceTransformer
queries = ["手机开不了机怎么办?"]
passages = ["样例段落-1", "样例段落-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/baai-general-embedding-large-zh-instruction')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T

Limitations

This model only works for Chinese texts and long texts will be truncated to a maximum of 512 tokens.