Edit model card

videomae-base-finetuned-camera_move-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0146
  • Accuracy: 0.7285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 13000

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4019 0.01 131 1.0423 0.5960
1.0428 1.01 262 0.9115 0.6291
0.8694 2.01 393 0.8362 0.6424
0.6894 3.01 524 0.7107 0.7086
0.6741 4.01 655 0.6441 0.7219
0.5955 5.01 786 0.8368 0.6821
0.5898 6.01 917 0.7774 0.7152
0.5252 7.01 1048 0.6022 0.7682
0.453 8.01 1179 0.6388 0.7881
0.4625 9.01 1310 0.8417 0.7152
0.465 10.01 1441 0.8575 0.6954
0.5106 11.01 1572 0.7849 0.7616
0.4138 12.01 1703 0.9293 0.7086
0.3526 13.01 1834 1.2684 0.6225
0.3645 14.01 1965 0.9428 0.7285
0.2778 15.01 2096 1.0217 0.6821
0.2821 16.01 2227 1.3365 0.6623
0.2654 17.01 2358 1.0170 0.7550
0.2961 18.01 2489 1.3952 0.7152
0.1987 19.01 2620 1.4083 0.6954
0.1832 20.01 2751 1.5808 0.6689
0.2035 21.01 2882 1.2864 0.7483
0.1608 22.01 3013 1.7499 0.6755
0.2171 23.01 3144 1.2574 0.7417
0.1824 24.01 3275 1.4203 0.7483
0.152 25.01 3406 1.4163 0.7351
0.1512 26.01 3537 1.5550 0.7086
0.1635 27.01 3668 1.2334 0.7682
0.1371 28.01 3799 1.5798 0.7417
0.1048 29.01 3930 1.6993 0.7219
0.097 30.01 4061 1.8505 0.6887
0.1662 31.01 4192 1.5091 0.7417
0.0957 32.01 4323 1.5388 0.7285
0.0967 33.01 4454 1.6766 0.7219
0.1581 34.01 4585 1.5444 0.7550
0.0967 35.01 4716 1.6108 0.7219
0.1013 36.01 4847 1.6734 0.7417
0.0691 37.01 4978 1.5116 0.7616
0.1161 38.01 5109 1.6343 0.7285
0.0847 39.01 5240 1.6119 0.7616
0.0769 40.01 5371 1.8494 0.7285
0.0604 41.01 5502 1.9854 0.7020
0.0845 42.01 5633 1.9722 0.7020
0.0808 43.01 5764 1.9046 0.7219
0.091 44.01 5895 1.8344 0.7152
0.1249 45.01 6026 1.7306 0.7219
0.0602 46.01 6157 1.8982 0.7550
0.0901 47.01 6288 1.9487 0.6954
0.081 48.01 6419 1.6702 0.7417
0.0336 49.01 6550 1.5591 0.7682
0.0975 50.01 6681 1.9009 0.7086
0.0697 51.01 6812 1.6135 0.7616
0.0474 52.01 6943 1.5886 0.7682
0.0427 53.01 7074 1.6915 0.7616
0.0774 54.01 7205 1.7434 0.7417
0.0685 55.01 7336 1.9552 0.7152
0.0531 56.01 7467 1.7448 0.7550
0.0371 57.01 7598 1.8175 0.7483
0.0244 58.01 7729 1.9252 0.7351
0.0317 59.01 7860 2.1868 0.6954
0.0813 60.01 7991 1.8846 0.7417
0.0857 61.01 8122 1.7532 0.7285
0.0424 62.01 8253 1.8003 0.7550
0.0481 63.01 8384 1.7935 0.7351
0.0495 64.01 8515 2.0369 0.7219
0.0217 65.01 8646 2.0552 0.7219
0.0303 66.01 8777 1.8629 0.7417
0.0439 67.01 8908 1.9953 0.7417
0.0518 68.01 9039 1.9958 0.7351
0.0295 69.01 9170 1.8984 0.7616
0.0485 70.01 9301 1.7583 0.7483
0.0149 71.01 9432 1.8815 0.7351
0.0107 72.01 9563 1.8341 0.7616
0.0475 73.01 9694 1.7961 0.7351
0.0318 74.01 9825 2.0999 0.7285
0.0108 75.01 9956 2.0441 0.7219
0.0085 76.01 10087 1.9867 0.7351
0.0278 77.01 10218 1.7968 0.7682
0.0106 78.01 10349 1.8662 0.7682
0.0241 79.01 10480 1.8388 0.7682
0.0303 80.01 10611 1.8758 0.7682
0.0199 81.01 10742 1.9275 0.7483
0.0052 82.01 10873 1.8741 0.7417
0.007 83.01 11004 2.0243 0.7219
0.0101 84.01 11135 1.9947 0.7285
0.0184 85.01 11266 1.9342 0.7417
0.0062 86.01 11397 2.0611 0.7351
0.018 87.01 11528 1.9867 0.7550
0.0194 88.01 11659 1.8631 0.7483
0.0396 89.01 11790 1.9126 0.7417
0.0048 90.01 11921 1.8788 0.7351
0.0044 91.01 12052 1.8962 0.7351
0.0033 92.01 12183 1.9455 0.7351
0.0052 93.01 12314 1.9772 0.7351
0.0068 94.01 12445 2.0047 0.7351
0.0046 95.01 12576 2.0135 0.7351
0.0158 96.01 12707 2.0176 0.7351
0.0074 97.01 12838 2.0148 0.7285
0.0016 98.01 12969 2.0152 0.7285
0.0051 99.0 13000 2.0146 0.7285

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
15
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BBGAME605065444/videomae-base-finetuned-camera_move-subset

Finetuned
(412)
this model